![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > preq1d | Structured version Visualization version GIF version |
Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
preq1d | ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | preq1 4412 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 {cpr 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-un 3720 df-sn 4322 df-pr 4324 |
This theorem is referenced by: propeqop 5118 opthwiener 5124 fprg 6585 fnpr2g 6638 dfac2b 9143 dfac2OLD 9145 symg2bas 18018 crctcshwlkn0lem6 26918 wwlksnredwwlkn 27013 wwlksnextprop 27030 clwwlk1loop 27111 clwlkclwwlklem2fv1 27118 clwlkclwwlklem2fv2 27119 clwlkclwwlklem2a 27121 clwlkclwwlklem3 27124 clwwisshclwwslem 27137 clwwlknlbonbgr1 27168 clwwlkn1 27170 frcond1 27420 frgr1v 27425 nfrgr2v 27426 frgr3v 27429 n4cyclfrgr 27445 2clwwlk2clwwlklem 27503 fprb 31976 wopprc 38099 |
Copyright terms: Public domain | W3C validator |