MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prf2nd Structured version   Visualization version   GIF version

Theorem prf2nd 17449
Description: Cancellation of pairing with second projection. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
prf1st.p 𝑃 = (𝐹 ⟨,⟩F 𝐺)
prf1st.c (𝜑𝐹 ∈ (𝐶 Func 𝐷))
prf1st.d (𝜑𝐺 ∈ (𝐶 Func 𝐸))
Assertion
Ref Expression
prf2nd (𝜑 → ((𝐷 2ndF 𝐸) ∘func 𝑃) = 𝐺)

Proof of Theorem prf2nd
Dummy variables 𝑓 𝑥 𝑦 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . . . . 7 (𝐷 ×c 𝐸) = (𝐷 ×c 𝐸)
2 eqid 2821 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
3 eqid 2821 . . . . . . . 8 (Base‘𝐸) = (Base‘𝐸)
41, 2, 3xpcbas 17422 . . . . . . 7 ((Base‘𝐷) × (Base‘𝐸)) = (Base‘(𝐷 ×c 𝐸))
5 eqid 2821 . . . . . . 7 (Hom ‘(𝐷 ×c 𝐸)) = (Hom ‘(𝐷 ×c 𝐸))
6 prf1st.c . . . . . . . . . 10 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
7 funcrcl 17127 . . . . . . . . . 10 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
86, 7syl 17 . . . . . . . . 9 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
98simprd 498 . . . . . . . 8 (𝜑𝐷 ∈ Cat)
109adantr 483 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
11 prf1st.d . . . . . . . . . 10 (𝜑𝐺 ∈ (𝐶 Func 𝐸))
12 funcrcl 17127 . . . . . . . . . 10 (𝐺 ∈ (𝐶 Func 𝐸) → (𝐶 ∈ Cat ∧ 𝐸 ∈ Cat))
1311, 12syl 17 . . . . . . . . 9 (𝜑 → (𝐶 ∈ Cat ∧ 𝐸 ∈ Cat))
1413simprd 498 . . . . . . . 8 (𝜑𝐸 ∈ Cat)
1514adantr 483 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat)
16 eqid 2821 . . . . . . 7 (𝐷 2ndF 𝐸) = (𝐷 2ndF 𝐸)
17 eqid 2821 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
18 relfunc 17126 . . . . . . . . . . 11 Rel (𝐶 Func 𝐷)
19 1st2ndbr 7735 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2018, 6, 19sylancr 589 . . . . . . . . . 10 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2117, 2, 20funcf1 17130 . . . . . . . . 9 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
2221ffvelrnda 6846 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
23 relfunc 17126 . . . . . . . . . . 11 Rel (𝐶 Func 𝐸)
24 1st2ndbr 7735 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐸) ∧ 𝐺 ∈ (𝐶 Func 𝐸)) → (1st𝐺)(𝐶 Func 𝐸)(2nd𝐺))
2523, 11, 24sylancr 589 . . . . . . . . . 10 (𝜑 → (1st𝐺)(𝐶 Func 𝐸)(2nd𝐺))
2617, 3, 25funcf1 17130 . . . . . . . . 9 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐸))
2726ffvelrnda 6846 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐸))
2822, 27opelxpd 5588 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ ∈ ((Base‘𝐷) × (Base‘𝐸)))
291, 4, 5, 10, 15, 16, 282ndf1 17439 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝐷 2ndF 𝐸))‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩) = (2nd ‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
30 fvex 6678 . . . . . . 7 ((1st𝐹)‘𝑥) ∈ V
31 fvex 6678 . . . . . . 7 ((1st𝐺)‘𝑥) ∈ V
3230, 31op2nd 7692 . . . . . 6 (2nd ‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩) = ((1st𝐺)‘𝑥)
3329, 32syl6eq 2872 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝐷 2ndF 𝐸))‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩) = ((1st𝐺)‘𝑥))
3433mpteq2dva 5154 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘(𝐷 2ndF 𝐸))‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩)) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st𝐺)‘𝑥)))
35 prf1st.p . . . . . . 7 𝑃 = (𝐹 ⟨,⟩F 𝐺)
36 eqid 2821 . . . . . . 7 (Hom ‘𝐶) = (Hom ‘𝐶)
3735, 17, 36, 6, 11prfval 17443 . . . . . 6 (𝜑𝑃 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
38 fvex 6678 . . . . . . . 8 (Base‘𝐶) ∈ V
3938mptex 6980 . . . . . . 7 (𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩) ∈ V
4038, 38mpoex 7771 . . . . . . 7 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)) ∈ V
4139, 40op1std 7693 . . . . . 6 (𝑃 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩ → (1st𝑃) = (𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
4237, 41syl 17 . . . . 5 (𝜑 → (1st𝑃) = (𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
43 relfunc 17126 . . . . . . . 8 Rel ((𝐷 ×c 𝐸) Func 𝐸)
441, 9, 14, 162ndfcl 17442 . . . . . . . 8 (𝜑 → (𝐷 2ndF 𝐸) ∈ ((𝐷 ×c 𝐸) Func 𝐸))
45 1st2ndbr 7735 . . . . . . . 8 ((Rel ((𝐷 ×c 𝐸) Func 𝐸) ∧ (𝐷 2ndF 𝐸) ∈ ((𝐷 ×c 𝐸) Func 𝐸)) → (1st ‘(𝐷 2ndF 𝐸))((𝐷 ×c 𝐸) Func 𝐸)(2nd ‘(𝐷 2ndF 𝐸)))
4643, 44, 45sylancr 589 . . . . . . 7 (𝜑 → (1st ‘(𝐷 2ndF 𝐸))((𝐷 ×c 𝐸) Func 𝐸)(2nd ‘(𝐷 2ndF 𝐸)))
474, 3, 46funcf1 17130 . . . . . 6 (𝜑 → (1st ‘(𝐷 2ndF 𝐸)):((Base‘𝐷) × (Base‘𝐸))⟶(Base‘𝐸))
4847feqmptd 6728 . . . . 5 (𝜑 → (1st ‘(𝐷 2ndF 𝐸)) = (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐸)) ↦ ((1st ‘(𝐷 2ndF 𝐸))‘𝑢)))
49 fveq2 6665 . . . . 5 (𝑢 = ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ → ((1st ‘(𝐷 2ndF 𝐸))‘𝑢) = ((1st ‘(𝐷 2ndF 𝐸))‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
5028, 42, 48, 49fmptco 6886 . . . 4 (𝜑 → ((1st ‘(𝐷 2ndF 𝐸)) ∘ (1st𝑃)) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘(𝐷 2ndF 𝐸))‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩)))
5126feqmptd 6728 . . . 4 (𝜑 → (1st𝐺) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st𝐺)‘𝑥)))
5234, 50, 513eqtr4d 2866 . . 3 (𝜑 → ((1st ‘(𝐷 2ndF 𝐸)) ∘ (1st𝑃)) = (1st𝐺))
539ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐷 ∈ Cat)
5414ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐸 ∈ Cat)
55 relfunc 17126 . . . . . . . . . . . . . . . 16 Rel (𝐶 Func (𝐷 ×c 𝐸))
5635, 1, 6, 11prfcl 17447 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ (𝐶 Func (𝐷 ×c 𝐸)))
57 1st2ndbr 7735 . . . . . . . . . . . . . . . 16 ((Rel (𝐶 Func (𝐷 ×c 𝐸)) ∧ 𝑃 ∈ (𝐶 Func (𝐷 ×c 𝐸))) → (1st𝑃)(𝐶 Func (𝐷 ×c 𝐸))(2nd𝑃))
5855, 56, 57sylancr 589 . . . . . . . . . . . . . . 15 (𝜑 → (1st𝑃)(𝐶 Func (𝐷 ×c 𝐸))(2nd𝑃))
5917, 4, 58funcf1 17130 . . . . . . . . . . . . . 14 (𝜑 → (1st𝑃):(Base‘𝐶)⟶((Base‘𝐷) × (Base‘𝐸)))
6059ffvelrnda 6846 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝑃)‘𝑥) ∈ ((Base‘𝐷) × (Base‘𝐸)))
6160adantrr 715 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝑃)‘𝑥) ∈ ((Base‘𝐷) × (Base‘𝐸)))
6261adantr 483 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((1st𝑃)‘𝑥) ∈ ((Base‘𝐷) × (Base‘𝐸)))
6359ffvelrnda 6846 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐶)) → ((1st𝑃)‘𝑦) ∈ ((Base‘𝐷) × (Base‘𝐸)))
6463adantrl 714 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝑃)‘𝑦) ∈ ((Base‘𝐷) × (Base‘𝐸)))
6564adantr 483 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((1st𝑃)‘𝑦) ∈ ((Base‘𝐷) × (Base‘𝐸)))
661, 4, 5, 53, 54, 16, 62, 652ndf2 17440 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)) = (2nd ↾ (((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦))))
6766fveq1d 6667 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦))‘((𝑥(2nd𝑃)𝑦)‘𝑓)) = ((2nd ↾ (((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦)))‘((𝑥(2nd𝑃)𝑦)‘𝑓)))
6858adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝑃)(𝐶 Func (𝐷 ×c 𝐸))(2nd𝑃))
69 simprl 769 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
70 simprr 771 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
7117, 36, 5, 68, 69, 70funcf2 17132 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝑃)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦)))
7271ffvelrnda 6846 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝑃)𝑦)‘𝑓) ∈ (((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦)))
7372fvresd 6685 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((2nd ↾ (((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦)))‘((𝑥(2nd𝑃)𝑦)‘𝑓)) = (2nd ‘((𝑥(2nd𝑃)𝑦)‘𝑓)))
746ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐹 ∈ (𝐶 Func 𝐷))
7511ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐺 ∈ (𝐶 Func 𝐸))
7669adantr 483 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶))
7770adantr 483 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶))
78 simpr 487 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
7935, 17, 36, 74, 75, 76, 77, 78prf2 17446 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝑃)𝑦)‘𝑓) = ⟨((𝑥(2nd𝐹)𝑦)‘𝑓), ((𝑥(2nd𝐺)𝑦)‘𝑓)⟩)
8079fveq2d 6669 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (2nd ‘((𝑥(2nd𝑃)𝑦)‘𝑓)) = (2nd ‘⟨((𝑥(2nd𝐹)𝑦)‘𝑓), ((𝑥(2nd𝐺)𝑦)‘𝑓)⟩))
81 fvex 6678 . . . . . . . . . . 11 ((𝑥(2nd𝐹)𝑦)‘𝑓) ∈ V
82 fvex 6678 . . . . . . . . . . 11 ((𝑥(2nd𝐺)𝑦)‘𝑓) ∈ V
8381, 82op2nd 7692 . . . . . . . . . 10 (2nd ‘⟨((𝑥(2nd𝐹)𝑦)‘𝑓), ((𝑥(2nd𝐺)𝑦)‘𝑓)⟩) = ((𝑥(2nd𝐺)𝑦)‘𝑓)
8480, 83syl6eq 2872 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (2nd ‘((𝑥(2nd𝑃)𝑦)‘𝑓)) = ((𝑥(2nd𝐺)𝑦)‘𝑓))
8567, 73, 843eqtrd 2860 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦))‘((𝑥(2nd𝑃)𝑦)‘𝑓)) = ((𝑥(2nd𝐺)𝑦)‘𝑓))
8685mpteq2dva 5154 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦))‘((𝑥(2nd𝑃)𝑦)‘𝑓))) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd𝐺)𝑦)‘𝑓)))
87 eqid 2821 . . . . . . . . 9 (Hom ‘𝐸) = (Hom ‘𝐸)
8846adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘(𝐷 2ndF 𝐸))((𝐷 ×c 𝐸) Func 𝐸)(2nd ‘(𝐷 2ndF 𝐸)))
894, 5, 87, 88, 61, 64funcf2 17132 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)):(((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦))⟶(((1st ‘(𝐷 2ndF 𝐸))‘((1st𝑃)‘𝑥))(Hom ‘𝐸)((1st ‘(𝐷 2ndF 𝐸))‘((1st𝑃)‘𝑦))))
90 fcompt 6890 . . . . . . . 8 (((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)):(((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦))⟶(((1st ‘(𝐷 2ndF 𝐸))‘((1st𝑃)‘𝑥))(Hom ‘𝐸)((1st ‘(𝐷 2ndF 𝐸))‘((1st𝑃)‘𝑦))) ∧ (𝑥(2nd𝑃)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦))) → ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦)) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦))‘((𝑥(2nd𝑃)𝑦)‘𝑓))))
9189, 71, 90syl2anc 586 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦)) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦))‘((𝑥(2nd𝑃)𝑦)‘𝑓))))
9225adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐺)(𝐶 Func 𝐸)(2nd𝐺))
9317, 36, 87, 92, 69, 70funcf2 17132 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘𝑥)(Hom ‘𝐸)((1st𝐺)‘𝑦)))
9493feqmptd 6728 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐺)𝑦) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd𝐺)𝑦)‘𝑓)))
9586, 91, 943eqtr4d 2866 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦)) = (𝑥(2nd𝐺)𝑦))
96953impb 1111 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦)) = (𝑥(2nd𝐺)𝑦))
9796mpoeq3dva 7225 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐺)𝑦)))
9817, 25funcfn2 17133 . . . . 5 (𝜑 → (2nd𝐺) Fn ((Base‘𝐶) × (Base‘𝐶)))
99 fnov 7276 . . . . 5 ((2nd𝐺) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd𝐺) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐺)𝑦)))
10098, 99sylib 220 . . . 4 (𝜑 → (2nd𝐺) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐺)𝑦)))
10197, 100eqtr4d 2859 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦))) = (2nd𝐺))
10252, 101opeq12d 4805 . 2 (𝜑 → ⟨((1st ‘(𝐷 2ndF 𝐸)) ∘ (1st𝑃)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦)))⟩ = ⟨(1st𝐺), (2nd𝐺)⟩)
10317, 56, 44cofuval 17146 . 2 (𝜑 → ((𝐷 2ndF 𝐸) ∘func 𝑃) = ⟨((1st ‘(𝐷 2ndF 𝐸)) ∘ (1st𝑃)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦)))⟩)
104 1st2nd 7732 . . 3 ((Rel (𝐶 Func 𝐸) ∧ 𝐺 ∈ (𝐶 Func 𝐸)) → 𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
10523, 11, 104sylancr 589 . 2 (𝜑𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
106102, 103, 1053eqtr4d 2866 1 (𝜑 → ((𝐷 2ndF 𝐸) ∘func 𝑃) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  cop 4567   class class class wbr 5059  cmpt 5139   × cxp 5548  cres 5552  ccom 5554  Rel wrel 5555   Fn wfn 6345  wf 6346  cfv 6350  (class class class)co 7150  cmpo 7152  1st c1st 7681  2nd c2nd 7682  Basecbs 16477  Hom chom 16570  Catccat 16929   Func cfunc 17118  func ccofu 17120   ×c cxpc 17412   2ndF c2ndf 17414   ⟨,⟩F cprf 17415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-hom 16583  df-cco 16584  df-cat 16933  df-cid 16934  df-func 17122  df-cofu 17124  df-xpc 17416  df-2ndf 17418  df-prf 17419
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator