MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prfval Structured version   Visualization version   GIF version

Theorem prfval 17040
Description: Value of the pairing functor. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
prfval.k 𝑃 = (𝐹 ⟨,⟩F 𝐺)
prfval.b 𝐵 = (Base‘𝐶)
prfval.h 𝐻 = (Hom ‘𝐶)
prfval.c (𝜑𝐹 ∈ (𝐶 Func 𝐷))
prfval.d (𝜑𝐺 ∈ (𝐶 Func 𝐸))
Assertion
Ref Expression
prfval (𝜑𝑃 = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
Distinct variable groups:   𝑥,,𝑦,𝐵   𝑥,𝐶,𝑦   ,𝐹,𝑥,𝑦   𝜑,,𝑥,𝑦   𝑥,𝐷,𝑦   ,𝐺,𝑥,𝑦   ,𝐻,𝑥,𝑦
Allowed substitution hints:   𝐶()   𝐷()   𝑃(𝑥,𝑦,)   𝐸(𝑥,𝑦,)

Proof of Theorem prfval
Dummy variables 𝑓 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prfval.k . 2 𝑃 = (𝐹 ⟨,⟩F 𝐺)
2 df-prf 17016 . . . 4 ⟨,⟩F = (𝑓 ∈ V, 𝑔 ∈ V ↦ dom (1st𝑓) / 𝑏⟨(𝑥𝑏 ↦ ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩), (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩))⟩)
32a1i 11 . . 3 (𝜑 → ⟨,⟩F = (𝑓 ∈ V, 𝑔 ∈ V ↦ dom (1st𝑓) / 𝑏⟨(𝑥𝑏 ↦ ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩), (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩))⟩))
4 fvex 6362 . . . . . 6 (1st𝑓) ∈ V
54dmex 7264 . . . . 5 dom (1st𝑓) ∈ V
65a1i 11 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → dom (1st𝑓) ∈ V)
7 simprl 811 . . . . . . 7 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → 𝑓 = 𝐹)
87fveq2d 6356 . . . . . 6 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (1st𝑓) = (1st𝐹))
98dmeqd 5481 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → dom (1st𝑓) = dom (1st𝐹))
10 prfval.b . . . . . . . 8 𝐵 = (Base‘𝐶)
11 eqid 2760 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
12 relfunc 16723 . . . . . . . . 9 Rel (𝐶 Func 𝐷)
13 prfval.c . . . . . . . . 9 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
14 1st2ndbr 7384 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1512, 13, 14sylancr 698 . . . . . . . 8 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1610, 11, 15funcf1 16727 . . . . . . 7 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝐷))
17 fdm 6212 . . . . . . 7 ((1st𝐹):𝐵⟶(Base‘𝐷) → dom (1st𝐹) = 𝐵)
1816, 17syl 17 . . . . . 6 (𝜑 → dom (1st𝐹) = 𝐵)
1918adantr 472 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → dom (1st𝐹) = 𝐵)
209, 19eqtrd 2794 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → dom (1st𝑓) = 𝐵)
21 simpr 479 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
22 simplrl 819 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → 𝑓 = 𝐹)
2322fveq2d 6356 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (1st𝑓) = (1st𝐹))
2423fveq1d 6354 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ((1st𝑓)‘𝑥) = ((1st𝐹)‘𝑥))
25 simplrr 820 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → 𝑔 = 𝐺)
2625fveq2d 6356 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (1st𝑔) = (1st𝐺))
2726fveq1d 6354 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ((1st𝑔)‘𝑥) = ((1st𝐺)‘𝑥))
2824, 27opeq12d 4561 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ = ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩)
2921, 28mpteq12dv 4885 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (𝑥𝑏 ↦ ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩) = (𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
30 eqidd 2761 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩) = ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩))
3121, 21, 30mpt2eq123dv 6882 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩)) = (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩)))
3222ad2antrr 764 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑓 = 𝐹)
3332fveq2d 6356 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (2nd𝑓) = (2nd𝐹))
3433oveqd 6830 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑥(2nd𝑓)𝑦) = (𝑥(2nd𝐹)𝑦))
3534dmeqd 5481 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → dom (𝑥(2nd𝑓)𝑦) = dom (𝑥(2nd𝐹)𝑦))
36 prfval.h . . . . . . . . . . . 12 𝐻 = (Hom ‘𝐶)
37 eqid 2760 . . . . . . . . . . . 12 (Hom ‘𝐷) = (Hom ‘𝐷)
3815ad4antr 771 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
39 simplr 809 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑥𝐵)
40 simpr 479 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑦𝐵)
4110, 36, 37, 38, 39, 40funcf2 16729 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑥(2nd𝐹)𝑦):(𝑥𝐻𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
42 fdm 6212 . . . . . . . . . . 11 ((𝑥(2nd𝐹)𝑦):(𝑥𝐻𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)) → dom (𝑥(2nd𝐹)𝑦) = (𝑥𝐻𝑦))
4341, 42syl 17 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → dom (𝑥(2nd𝐹)𝑦) = (𝑥𝐻𝑦))
4435, 43eqtrd 2794 . . . . . . . . 9 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → dom (𝑥(2nd𝑓)𝑦) = (𝑥𝐻𝑦))
4534fveq1d 6354 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((𝑥(2nd𝑓)𝑦)‘) = ((𝑥(2nd𝐹)𝑦)‘))
4625ad2antrr 764 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑔 = 𝐺)
4746fveq2d 6356 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (2nd𝑔) = (2nd𝐺))
4847oveqd 6830 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑥(2nd𝑔)𝑦) = (𝑥(2nd𝐺)𝑦))
4948fveq1d 6354 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((𝑥(2nd𝑔)𝑦)‘) = ((𝑥(2nd𝐺)𝑦)‘))
5045, 49opeq12d 4561 . . . . . . . . 9 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩ = ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)
5144, 50mpteq12dv 4885 . . . . . . . 8 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩) = ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))
52513impa 1101 . . . . . . 7 ((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵𝑦𝐵) → ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩) = ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))
5352mpt2eq3dva 6884 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩)) = (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)))
5431, 53eqtrd 2794 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩)) = (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)))
5529, 54opeq12d 4561 . . . 4 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ⟨(𝑥𝑏 ↦ ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩), (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩))⟩ = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
566, 20, 55csbied2 3702 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → dom (1st𝑓) / 𝑏⟨(𝑥𝑏 ↦ ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩), (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩))⟩ = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
57 elex 3352 . . . 4 (𝐹 ∈ (𝐶 Func 𝐷) → 𝐹 ∈ V)
5813, 57syl 17 . . 3 (𝜑𝐹 ∈ V)
59 prfval.d . . . 4 (𝜑𝐺 ∈ (𝐶 Func 𝐸))
60 elex 3352 . . . 4 (𝐺 ∈ (𝐶 Func 𝐸) → 𝐺 ∈ V)
6159, 60syl 17 . . 3 (𝜑𝐺 ∈ V)
62 opex 5081 . . . 4 ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩ ∈ V
6362a1i 11 . . 3 (𝜑 → ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩ ∈ V)
643, 56, 58, 61, 63ovmpt2d 6953 . 2 (𝜑 → (𝐹 ⟨,⟩F 𝐺) = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
651, 64syl5eq 2806 1 (𝜑𝑃 = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  csb 3674  cop 4327   class class class wbr 4804  cmpt 4881  dom cdm 5266  Rel wrel 5271  wf 6045  cfv 6049  (class class class)co 6813  cmpt2 6815  1st c1st 7331  2nd c2nd 7332  Basecbs 16059  Hom chom 16154   Func cfunc 16715   ⟨,⟩F cprf 17012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-map 8025  df-ixp 8075  df-func 16719  df-prf 17016
This theorem is referenced by:  prf1  17041  prf2fval  17042  prfcl  17044  prf1st  17045  prf2nd  17046  1st2ndprf  17047
  Copyright terms: Public domain W3C validator