![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pridlc2 | Structured version Visualization version GIF version |
Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.) |
Ref | Expression |
---|---|
ispridlc.1 | ⊢ 𝐺 = (1st ‘𝑅) |
ispridlc.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
ispridlc.3 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
pridlc2 | ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → 𝐵 ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifn 3766 | . . . 4 ⊢ (𝐴 ∈ (𝑋 ∖ 𝑃) → ¬ 𝐴 ∈ 𝑃) | |
2 | 1 | 3ad2ant1 1102 | . . 3 ⊢ ((𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃) → ¬ 𝐴 ∈ 𝑃) |
3 | 2 | adantl 481 | . 2 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → ¬ 𝐴 ∈ 𝑃) |
4 | eldifi 3765 | . . 3 ⊢ (𝐴 ∈ (𝑋 ∖ 𝑃) → 𝐴 ∈ 𝑋) | |
5 | ispridlc.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
6 | ispridlc.2 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
7 | ispridlc.3 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
8 | 5, 6, 7 | pridlc 34000 | . . . 4 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → (𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃)) |
9 | 8 | ord 391 | . . 3 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → (¬ 𝐴 ∈ 𝑃 → 𝐵 ∈ 𝑃)) |
10 | 4, 9 | syl3anr1 1418 | . 2 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → (¬ 𝐴 ∈ 𝑃 → 𝐵 ∈ 𝑃)) |
11 | 3, 10 | mpd 15 | 1 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → 𝐵 ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ∖ cdif 3604 ran crn 5144 ‘cfv 5926 (class class class)co 6690 1st c1st 7208 2nd c2nd 7209 CRingOpsccring 33922 PrIdlcpridl 33937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-grpo 27475 df-gid 27476 df-ginv 27477 df-ablo 27527 df-ass 33772 df-exid 33774 df-mgmOLD 33778 df-sgrOLD 33790 df-mndo 33796 df-rngo 33824 df-com2 33919 df-crngo 33923 df-idl 33939 df-pridl 33940 df-igen 33989 |
This theorem is referenced by: pridlc3 34002 |
Copyright terms: Public domain | W3C validator |