Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pridlnr Structured version   Visualization version   GIF version

Theorem pridlnr 35195
Description: A prime ideal is a proper ideal. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
pridlnr.1 𝐺 = (1st𝑅)
prdilnr.2 𝑋 = ran 𝐺
Assertion
Ref Expression
pridlnr ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → 𝑃𝑋)

Proof of Theorem pridlnr
Dummy variables 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pridlnr.1 . . . 4 𝐺 = (1st𝑅)
2 eqid 2818 . . . 4 (2nd𝑅) = (2nd𝑅)
3 prdilnr.2 . . . 4 𝑋 = ran 𝐺
41, 2, 3ispridl 35193 . . 3 (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑅)𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
5 3anan12 1088 . . 3 ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑅)𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) ↔ (𝑃𝑋 ∧ (𝑃 ∈ (Idl‘𝑅) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑅)𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
64, 5syl6bb 288 . 2 (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃𝑋 ∧ (𝑃 ∈ (Idl‘𝑅) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑅)𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))))
76simprbda 499 1 ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → 𝑃𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 841  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wral 3135  wss 3933  ran crn 5549  cfv 6348  (class class class)co 7145  1st c1st 7676  2nd c2nd 7677  RingOpscrngo 35053  Idlcidl 35166  PrIdlcpridl 35167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-iota 6307  df-fun 6350  df-fv 6356  df-ov 7148  df-pridl 35170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator