![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prinfzo0 | Structured version Visualization version GIF version |
Description: The intersection of a half-open integer range and the pair of its outer left borders is empty. (Contributed by AV, 9-Jan-2021.) |
Ref | Expression |
---|---|
prinfzo0 | ⊢ (𝑀 ∈ ℤ → ({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz3 12465 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀)) | |
2 | fznuz 12536 | . . . . . 6 ⊢ (𝑀 ∈ (𝑀...𝑀) → ¬ 𝑀 ∈ (ℤ≥‘(𝑀 + 1))) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝑀 ∈ ℤ → ¬ 𝑀 ∈ (ℤ≥‘(𝑀 + 1))) |
4 | 3 | 3mix1d 1373 | . . . 4 ⊢ (𝑀 ∈ ℤ → (¬ 𝑀 ∈ (ℤ≥‘(𝑀 + 1)) ∨ ¬ 𝑁 ∈ ℤ ∨ ¬ 𝑀 < 𝑁)) |
5 | 3ianor 1096 | . . . . 5 ⊢ (¬ (𝑀 ∈ (ℤ≥‘(𝑀 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ↔ (¬ 𝑀 ∈ (ℤ≥‘(𝑀 + 1)) ∨ ¬ 𝑁 ∈ ℤ ∨ ¬ 𝑀 < 𝑁)) | |
6 | elfzo2 12588 | . . . . 5 ⊢ (𝑀 ∈ ((𝑀 + 1)..^𝑁) ↔ (𝑀 ∈ (ℤ≥‘(𝑀 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁)) | |
7 | 5, 6 | xchnxbir 322 | . . . 4 ⊢ (¬ 𝑀 ∈ ((𝑀 + 1)..^𝑁) ↔ (¬ 𝑀 ∈ (ℤ≥‘(𝑀 + 1)) ∨ ¬ 𝑁 ∈ ℤ ∨ ¬ 𝑀 < 𝑁)) |
8 | 4, 7 | sylibr 224 | . . 3 ⊢ (𝑀 ∈ ℤ → ¬ 𝑀 ∈ ((𝑀 + 1)..^𝑁)) |
9 | incom 3913 | . . . . 5 ⊢ ({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = (((𝑀 + 1)..^𝑁) ∩ {𝑀}) | |
10 | 9 | eqeq1i 2729 | . . . 4 ⊢ (({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ (((𝑀 + 1)..^𝑁) ∩ {𝑀}) = ∅) |
11 | disjsn 4353 | . . . 4 ⊢ ((((𝑀 + 1)..^𝑁) ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ ((𝑀 + 1)..^𝑁)) | |
12 | 10, 11 | bitri 264 | . . 3 ⊢ (({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ ¬ 𝑀 ∈ ((𝑀 + 1)..^𝑁)) |
13 | 8, 12 | sylibr 224 | . 2 ⊢ (𝑀 ∈ ℤ → ({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅) |
14 | fzonel 12598 | . . . 4 ⊢ ¬ 𝑁 ∈ ((𝑀 + 1)..^𝑁) | |
15 | 14 | a1i 11 | . . 3 ⊢ (𝑀 ∈ ℤ → ¬ 𝑁 ∈ ((𝑀 + 1)..^𝑁)) |
16 | incom 3913 | . . . . 5 ⊢ ({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = (((𝑀 + 1)..^𝑁) ∩ {𝑁}) | |
17 | 16 | eqeq1i 2729 | . . . 4 ⊢ (({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ (((𝑀 + 1)..^𝑁) ∩ {𝑁}) = ∅) |
18 | disjsn 4353 | . . . 4 ⊢ ((((𝑀 + 1)..^𝑁) ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ ((𝑀 + 1)..^𝑁)) | |
19 | 17, 18 | bitri 264 | . . 3 ⊢ (({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ ¬ 𝑁 ∈ ((𝑀 + 1)..^𝑁)) |
20 | 15, 19 | sylibr 224 | . 2 ⊢ (𝑀 ∈ ℤ → ({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅) |
21 | df-pr 4288 | . . . . 5 ⊢ {𝑀, 𝑁} = ({𝑀} ∪ {𝑁}) | |
22 | 21 | ineq1i 3918 | . . . 4 ⊢ ({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = (({𝑀} ∪ {𝑁}) ∩ ((𝑀 + 1)..^𝑁)) |
23 | 22 | eqeq1i 2729 | . . 3 ⊢ (({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ (({𝑀} ∪ {𝑁}) ∩ ((𝑀 + 1)..^𝑁)) = ∅) |
24 | undisj1 4137 | . . 3 ⊢ ((({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ∧ ({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅) ↔ (({𝑀} ∪ {𝑁}) ∩ ((𝑀 + 1)..^𝑁)) = ∅) | |
25 | 23, 24 | bitr4i 267 | . 2 ⊢ (({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ (({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ∧ ({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅)) |
26 | 13, 20, 25 | sylanbrc 701 | 1 ⊢ (𝑀 ∈ ℤ → ({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∨ w3o 1071 ∧ w3a 1072 = wceq 1596 ∈ wcel 2103 ∪ cun 3678 ∩ cin 3679 ∅c0 4023 {csn 4285 {cpr 4287 class class class wbr 4760 ‘cfv 6001 (class class class)co 6765 1c1 10050 + caddc 10052 < clt 10187 ℤcz 11490 ℤ≥cuz 11800 ...cfz 12440 ..^cfzo 12580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-1st 7285 df-2nd 7286 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-er 7862 df-en 8073 df-dom 8074 df-sdom 8075 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-nn 11134 df-n0 11406 df-z 11491 df-uz 11801 df-fz 12441 df-fzo 12581 |
This theorem is referenced by: spthispth 26753 |
Copyright terms: Public domain | W3C validator |