MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdiveq Structured version   Visualization version   GIF version

Theorem prmdiveq 15410
Description: The modular inverse of 𝐴 mod 𝑃 is unique. (Contributed by Mario Carneiro, 24-Jan-2015.)
Hypothesis
Ref Expression
prmdiv.1 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃)
Assertion
Ref Expression
prmdiveq ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1)) ↔ 𝑆 = 𝑅))

Proof of Theorem prmdiveq
StepHypRef Expression
1 simprr 795 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∥ ((𝐴 · 𝑆) − 1))
2 prmdiv.1 . . . . . . . . . . 11 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃)
32prmdiv 15409 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))
43adantr 481 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))
54simprd 479 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∥ ((𝐴 · 𝑅) − 1))
6 simpl1 1062 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∈ ℙ)
7 prmz 15308 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
86, 7syl 17 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∈ ℤ)
9 simpl2 1063 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝐴 ∈ ℤ)
10 elfzelz 12281 . . . . . . . . . . . 12 (𝑆 ∈ (0...(𝑃 − 1)) → 𝑆 ∈ ℤ)
1110ad2antrl 763 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 ∈ ℤ)
129, 11zmulcld 11432 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴 · 𝑆) ∈ ℤ)
13 1z 11352 . . . . . . . . . 10 1 ∈ ℤ
14 zsubcl 11364 . . . . . . . . . 10 (((𝐴 · 𝑆) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝐴 · 𝑆) − 1) ∈ ℤ)
1512, 13, 14sylancl 693 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → ((𝐴 · 𝑆) − 1) ∈ ℤ)
164simpld 475 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑅 ∈ (1...(𝑃 − 1)))
17 elfzelz 12281 . . . . . . . . . . . 12 (𝑅 ∈ (1...(𝑃 − 1)) → 𝑅 ∈ ℤ)
1816, 17syl 17 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑅 ∈ ℤ)
199, 18zmulcld 11432 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴 · 𝑅) ∈ ℤ)
20 zsubcl 11364 . . . . . . . . . 10 (((𝐴 · 𝑅) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝐴 · 𝑅) − 1) ∈ ℤ)
2119, 13, 20sylancl 693 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → ((𝐴 · 𝑅) − 1) ∈ ℤ)
22 dvds2sub 14935 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ ((𝐴 · 𝑆) − 1) ∈ ℤ ∧ ((𝐴 · 𝑅) − 1) ∈ ℤ) → ((𝑃 ∥ ((𝐴 · 𝑆) − 1) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)) → 𝑃 ∥ (((𝐴 · 𝑆) − 1) − ((𝐴 · 𝑅) − 1))))
238, 15, 21, 22syl3anc 1323 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → ((𝑃 ∥ ((𝐴 · 𝑆) − 1) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)) → 𝑃 ∥ (((𝐴 · 𝑆) − 1) − ((𝐴 · 𝑅) − 1))))
241, 5, 23mp2and 714 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∥ (((𝐴 · 𝑆) − 1) − ((𝐴 · 𝑅) − 1)))
2512zcnd 11427 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴 · 𝑆) ∈ ℂ)
2619zcnd 11427 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴 · 𝑅) ∈ ℂ)
27 1cnd 10001 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 1 ∈ ℂ)
2825, 26, 27nnncan2d 10372 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (((𝐴 · 𝑆) − 1) − ((𝐴 · 𝑅) − 1)) = ((𝐴 · 𝑆) − (𝐴 · 𝑅)))
299zcnd 11427 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝐴 ∈ ℂ)
30 elfznn0 12371 . . . . . . . . . . . 12 (𝑆 ∈ (0...(𝑃 − 1)) → 𝑆 ∈ ℕ0)
3130ad2antrl 763 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 ∈ ℕ0)
3231nn0red 11297 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 ∈ ℝ)
3332recnd 10013 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 ∈ ℂ)
3418zcnd 11427 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑅 ∈ ℂ)
3529, 33, 34subdid 10431 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴 · (𝑆𝑅)) = ((𝐴 · 𝑆) − (𝐴 · 𝑅)))
3628, 35eqtr4d 2663 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (((𝐴 · 𝑆) − 1) − ((𝐴 · 𝑅) − 1)) = (𝐴 · (𝑆𝑅)))
3724, 36breqtrd 4644 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∥ (𝐴 · (𝑆𝑅)))
38 simpl3 1064 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → ¬ 𝑃𝐴)
39 coprm 15342 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
406, 9, 39syl2anc 692 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
4138, 40mpbid 222 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑃 gcd 𝐴) = 1)
4211, 18zsubcld 11431 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑆𝑅) ∈ ℤ)
43 coprmdvds 15285 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝑆𝑅) ∈ ℤ) → ((𝑃 ∥ (𝐴 · (𝑆𝑅)) ∧ (𝑃 gcd 𝐴) = 1) → 𝑃 ∥ (𝑆𝑅)))
448, 9, 42, 43syl3anc 1323 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → ((𝑃 ∥ (𝐴 · (𝑆𝑅)) ∧ (𝑃 gcd 𝐴) = 1) → 𝑃 ∥ (𝑆𝑅)))
4537, 41, 44mp2and 714 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∥ (𝑆𝑅))
46 prmnn 15307 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
476, 46syl 17 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∈ ℕ)
48 moddvds 14910 . . . . . 6 ((𝑃 ∈ ℕ ∧ 𝑆 ∈ ℤ ∧ 𝑅 ∈ ℤ) → ((𝑆 mod 𝑃) = (𝑅 mod 𝑃) ↔ 𝑃 ∥ (𝑆𝑅)))
4947, 11, 18, 48syl3anc 1323 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → ((𝑆 mod 𝑃) = (𝑅 mod 𝑃) ↔ 𝑃 ∥ (𝑆𝑅)))
5045, 49mpbird 247 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑆 mod 𝑃) = (𝑅 mod 𝑃))
5147nnrpd 11814 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∈ ℝ+)
52 elfzle1 12283 . . . . . 6 (𝑆 ∈ (0...(𝑃 − 1)) → 0 ≤ 𝑆)
5352ad2antrl 763 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 0 ≤ 𝑆)
54 elfzle2 12284 . . . . . . 7 (𝑆 ∈ (0...(𝑃 − 1)) → 𝑆 ≤ (𝑃 − 1))
5554ad2antrl 763 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 ≤ (𝑃 − 1))
56 zltlem1 11375 . . . . . . 7 ((𝑆 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑆 < 𝑃𝑆 ≤ (𝑃 − 1)))
5711, 8, 56syl2anc 692 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑆 < 𝑃𝑆 ≤ (𝑃 − 1)))
5855, 57mpbird 247 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 < 𝑃)
59 modid 12632 . . . . 5 (((𝑆 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 𝑆𝑆 < 𝑃)) → (𝑆 mod 𝑃) = 𝑆)
6032, 51, 53, 58, 59syl22anc 1324 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑆 mod 𝑃) = 𝑆)
61 prmuz2 15327 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
62 uznn0sub 11663 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → (𝑃 − 2) ∈ ℕ0)
636, 61, 623syl 18 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑃 − 2) ∈ ℕ0)
64 zexpcl 12812 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈ ℕ0) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
659, 63, 64syl2anc 692 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
6665zred 11426 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴↑(𝑃 − 2)) ∈ ℝ)
67 modabs2 12641 . . . . . 6 (((𝐴↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃))
6866, 51, 67syl2anc 692 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃))
692oveq1i 6615 . . . . 5 (𝑅 mod 𝑃) = (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃)
7068, 69, 23eqtr4g 2685 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑅 mod 𝑃) = 𝑅)
7150, 60, 703eqtr3d 2668 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 = 𝑅)
7271ex 450 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1)) → 𝑆 = 𝑅))
73 1e0p1 11496 . . . . . . . 8 1 = (0 + 1)
7473oveq1i 6615 . . . . . . 7 (1...(𝑃 − 1)) = ((0 + 1)...(𝑃 − 1))
75 0z 11333 . . . . . . . 8 0 ∈ ℤ
76 fzp1ss 12331 . . . . . . . 8 (0 ∈ ℤ → ((0 + 1)...(𝑃 − 1)) ⊆ (0...(𝑃 − 1)))
7775, 76ax-mp 5 . . . . . . 7 ((0 + 1)...(𝑃 − 1)) ⊆ (0...(𝑃 − 1))
7874, 77eqsstri 3619 . . . . . 6 (1...(𝑃 − 1)) ⊆ (0...(𝑃 − 1))
7978sseli 3584 . . . . 5 (𝑅 ∈ (1...(𝑃 − 1)) → 𝑅 ∈ (0...(𝑃 − 1)))
80 eleq1 2692 . . . . 5 (𝑆 = 𝑅 → (𝑆 ∈ (0...(𝑃 − 1)) ↔ 𝑅 ∈ (0...(𝑃 − 1))))
8179, 80syl5ibr 236 . . . 4 (𝑆 = 𝑅 → (𝑅 ∈ (1...(𝑃 − 1)) → 𝑆 ∈ (0...(𝑃 − 1))))
82 oveq2 6613 . . . . . . 7 (𝑆 = 𝑅 → (𝐴 · 𝑆) = (𝐴 · 𝑅))
8382oveq1d 6620 . . . . . 6 (𝑆 = 𝑅 → ((𝐴 · 𝑆) − 1) = ((𝐴 · 𝑅) − 1))
8483breq2d 4630 . . . . 5 (𝑆 = 𝑅 → (𝑃 ∥ ((𝐴 · 𝑆) − 1) ↔ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))
8584biimprd 238 . . . 4 (𝑆 = 𝑅 → (𝑃 ∥ ((𝐴 · 𝑅) − 1) → 𝑃 ∥ ((𝐴 · 𝑆) − 1)))
8681, 85anim12d 585 . . 3 (𝑆 = 𝑅 → ((𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)) → (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))))
873, 86syl5com 31 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑆 = 𝑅 → (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))))
8872, 87impbid 202 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1)) ↔ 𝑆 = 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1992  wss 3560   class class class wbr 4618  cfv 5850  (class class class)co 6605  cr 9880  0cc0 9881  1c1 9882   + caddc 9884   · cmul 9886   < clt 10019  cle 10020  cmin 10211  cn 10965  2c2 11015  0cn0 11237  cz 11322  cuz 11631  +crp 11776  ...cfz 12265   mod cmo 12605  cexp 12797  cdvds 14902   gcd cgcd 15135  cprime 15304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-sup 8293  df-inf 8294  df-card 8710  df-cda 8935  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-xnn0 11309  df-z 11323  df-uz 11632  df-rp 11777  df-fz 12266  df-fzo 12404  df-fl 12530  df-mod 12606  df-seq 12739  df-exp 12798  df-hash 13055  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-dvds 14903  df-gcd 15136  df-prm 15305  df-phi 15390
This theorem is referenced by:  prmdivdiv  15411  modprminveq  15424  wilthlem1  24689  wilthlem2  24690
  Copyright terms: Public domain W3C validator