Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmdvdsfmtnof Structured version   Visualization version   GIF version

Theorem prmdvdsfmtnof 43739
Description: The mapping of a Fermat number to its smallest prime factor is a function. (Contributed by AV, 4-Aug-2021.) (Proof shortened by II, 16-Feb-2023.)
Hypothesis
Ref Expression
prmdvdsfmtnof.1 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ))
Assertion
Ref Expression
prmdvdsfmtnof 𝐹:ran FermatNo⟶ℙ
Distinct variable group:   𝑓,𝑝
Allowed substitution hints:   𝐹(𝑓,𝑝)

Proof of Theorem prmdvdsfmtnof
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 prmdvdsfmtnof.1 . 2 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ))
2 fmtnorn 43687 . . 3 (𝑓 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑓)
3 ltso 10713 . . . . . 6 < Or ℝ
43a1i 11 . . . . 5 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → < Or ℝ)
5 fmtnoge3 43683 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ (ℤ‘3))
65adantr 483 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → (FermatNo‘𝑛) ∈ (ℤ‘3))
7 eleq1 2898 . . . . . . . . 9 ((FermatNo‘𝑛) = 𝑓 → ((FermatNo‘𝑛) ∈ (ℤ‘3) ↔ 𝑓 ∈ (ℤ‘3)))
87adantl 484 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → ((FermatNo‘𝑛) ∈ (ℤ‘3) ↔ 𝑓 ∈ (ℤ‘3)))
96, 8mpbid 234 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → 𝑓 ∈ (ℤ‘3))
10 uzuzle23 12281 . . . . . . 7 (𝑓 ∈ (ℤ‘3) → 𝑓 ∈ (ℤ‘2))
119, 10syl 17 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → 𝑓 ∈ (ℤ‘2))
12 eluz2nn 12276 . . . . . 6 (𝑓 ∈ (ℤ‘2) → 𝑓 ∈ ℕ)
13 prmdvdsfi 25676 . . . . . 6 (𝑓 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝑓} ∈ Fin)
1411, 12, 133syl 18 . . . . 5 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝𝑓} ∈ Fin)
15 exprmfct 16040 . . . . . . 7 (𝑓 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑓)
1611, 15syl 17 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → ∃𝑝 ∈ ℙ 𝑝𝑓)
17 rabn0 4337 . . . . . 6 ({𝑝 ∈ ℙ ∣ 𝑝𝑓} ≠ ∅ ↔ ∃𝑝 ∈ ℙ 𝑝𝑓)
1816, 17sylibr 236 . . . . 5 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝𝑓} ≠ ∅)
19 ssrab2 4054 . . . . . . 7 {𝑝 ∈ ℙ ∣ 𝑝𝑓} ⊆ ℙ
20 prmssnn 16012 . . . . . . . 8 ℙ ⊆ ℕ
21 nnssre 11634 . . . . . . . 8 ℕ ⊆ ℝ
2220, 21sstri 3974 . . . . . . 7 ℙ ⊆ ℝ
2319, 22sstri 3974 . . . . . 6 {𝑝 ∈ ℙ ∣ 𝑝𝑓} ⊆ ℝ
2423a1i 11 . . . . 5 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝𝑓} ⊆ ℝ)
25 fiinfcl 8957 . . . . . 6 (( < Or ℝ ∧ ({𝑝 ∈ ℙ ∣ 𝑝𝑓} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝑓} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝑓} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝑓})
2619, 25sseldi 3963 . . . . 5 (( < Or ℝ ∧ ({𝑝 ∈ ℙ ∣ 𝑝𝑓} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝑓} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝑓} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) ∈ ℙ)
274, 14, 18, 24, 26syl13anc 1367 . . . 4 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) ∈ ℙ)
2827rexlimiva 3279 . . 3 (∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑓 → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) ∈ ℙ)
292, 28sylbi 219 . 2 (𝑓 ∈ ran FermatNo → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) ∈ ℙ)
301, 29fmpti 6869 1 𝐹:ran FermatNo⟶ℙ
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wne 3014  wrex 3137  {crab 3140  wss 3934  c0 4289   class class class wbr 5057  cmpt 5137   Or wor 5466  ran crn 5549  wf 6344  cfv 6348  Fincfn 8501  infcinf 8897  cr 10528   < clt 10667  cn 11630  2c2 11684  3c3 11685  0cn0 11889  cuz 12235  cdvds 15599  cprime 16007  FermatNocfmtno 43680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12885  df-seq 13362  df-exp 13422  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-prm 16008  df-fmtno 43681
This theorem is referenced by:  prmdvdsfmtnof1  43740
  Copyright terms: Public domain W3C validator