MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdvdsprmo Structured version   Visualization version   GIF version

Theorem prmdvdsprmo 16372
Description: The primorial of a number is divisible by each prime less then or equal to the number. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 28-Aug-2020.)
Assertion
Ref Expression
prmdvdsprmo (𝑁 ∈ ℕ → ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 ∥ (#p𝑁)))
Distinct variable group:   𝑁,𝑝

Proof of Theorem prmdvdsprmo
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfi 13334 . . . . . . 7 (1...𝑁) ∈ Fin
2 diffi 8744 . . . . . . 7 ((1...𝑁) ∈ Fin → ((1...𝑁) ∖ {𝑝}) ∈ Fin)
31, 2mp1i 13 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → ((1...𝑁) ∖ {𝑝}) ∈ Fin)
4 eldifi 4102 . . . . . . . . 9 (𝑘 ∈ ((1...𝑁) ∖ {𝑝}) → 𝑘 ∈ (1...𝑁))
5 elfzelz 12902 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℤ)
64, 5syl 17 . . . . . . . 8 (𝑘 ∈ ((1...𝑁) ∖ {𝑝}) → 𝑘 ∈ ℤ)
7 1zzd 12007 . . . . . . . 8 (𝑘 ∈ ((1...𝑁) ∖ {𝑝}) → 1 ∈ ℤ)
86, 7ifcld 4511 . . . . . . 7 (𝑘 ∈ ((1...𝑁) ∖ {𝑝}) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℤ)
98adantl 484 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) ∧ 𝑘 ∈ ((1...𝑁) ∖ {𝑝})) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℤ)
103, 9fprodzcl 15302 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → ∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℤ)
11 prmz 16013 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
1211adantl 484 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
1312adantr 483 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 𝑝 ∈ ℤ)
14 dvdsmul2 15626 . . . . 5 ((∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℤ ∧ 𝑝 ∈ ℤ) → 𝑝 ∥ (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · 𝑝))
1510, 13, 14syl2anc 586 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 𝑝 ∥ (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · 𝑝))
16 nnnn0 11898 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
17 prmoval 16363 . . . . . . . 8 (𝑁 ∈ ℕ0 → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
1816, 17syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
1918ad2antrr 724 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
2019breq2d 5070 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (𝑝 ∥ (#p𝑁) ↔ 𝑝 ∥ ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1)))
21 neldifsnd 4719 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → ¬ 𝑝 ∈ ((1...𝑁) ∖ {𝑝}))
22 disjsn 4640 . . . . . . . . 9 ((((1...𝑁) ∖ {𝑝}) ∩ {𝑝}) = ∅ ↔ ¬ 𝑝 ∈ ((1...𝑁) ∖ {𝑝}))
2321, 22sylibr 236 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (((1...𝑁) ∖ {𝑝}) ∩ {𝑝}) = ∅)
24 prmnn 16012 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
2524adantl 484 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℕ)
2625anim1i 616 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (𝑝 ∈ ℕ ∧ 𝑝𝑁))
27 nnz 11998 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
28 fznn 12969 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑝 ∈ (1...𝑁) ↔ (𝑝 ∈ ℕ ∧ 𝑝𝑁)))
2927, 28syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑝 ∈ (1...𝑁) ↔ (𝑝 ∈ ℕ ∧ 𝑝𝑁)))
3029ad2antrr 724 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (𝑝 ∈ (1...𝑁) ↔ (𝑝 ∈ ℕ ∧ 𝑝𝑁)))
3126, 30mpbird 259 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 𝑝 ∈ (1...𝑁))
32 difsnid 4736 . . . . . . . . . 10 (𝑝 ∈ (1...𝑁) → (((1...𝑁) ∖ {𝑝}) ∪ {𝑝}) = (1...𝑁))
3332eqcomd 2827 . . . . . . . . 9 (𝑝 ∈ (1...𝑁) → (1...𝑁) = (((1...𝑁) ∖ {𝑝}) ∪ {𝑝}))
3431, 33syl 17 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (1...𝑁) = (((1...𝑁) ∖ {𝑝}) ∪ {𝑝}))
35 fzfid 13335 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (1...𝑁) ∈ Fin)
36 1zzd 12007 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → 1 ∈ ℤ)
375, 36ifcld 4511 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℤ)
3837zcnd 12082 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℂ)
3938adantl 484 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℂ)
4023, 34, 35, 39fprodsplit 15314 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) = (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · ∏𝑘 ∈ {𝑝}if(𝑘 ∈ ℙ, 𝑘, 1)))
41 simplr 767 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 𝑝 ∈ ℙ)
4225adantr 483 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 𝑝 ∈ ℕ)
4342nncnd 11648 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 𝑝 ∈ ℂ)
44 1cnd 10630 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 1 ∈ ℂ)
4543, 44ifcld 4511 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → if(𝑝 ∈ ℙ, 𝑝, 1) ∈ ℂ)
46 eleq1w 2895 . . . . . . . . . . . 12 (𝑘 = 𝑝 → (𝑘 ∈ ℙ ↔ 𝑝 ∈ ℙ))
47 id 22 . . . . . . . . . . . 12 (𝑘 = 𝑝𝑘 = 𝑝)
4846, 47ifbieq1d 4489 . . . . . . . . . . 11 (𝑘 = 𝑝 → if(𝑘 ∈ ℙ, 𝑘, 1) = if(𝑝 ∈ ℙ, 𝑝, 1))
4948prodsn 15310 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ if(𝑝 ∈ ℙ, 𝑝, 1) ∈ ℂ) → ∏𝑘 ∈ {𝑝}if(𝑘 ∈ ℙ, 𝑘, 1) = if(𝑝 ∈ ℙ, 𝑝, 1))
5041, 45, 49syl2anc 586 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → ∏𝑘 ∈ {𝑝}if(𝑘 ∈ ℙ, 𝑘, 1) = if(𝑝 ∈ ℙ, 𝑝, 1))
51 simpr 487 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
5251iftrued 4474 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → if(𝑝 ∈ ℙ, 𝑝, 1) = 𝑝)
5352adantr 483 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → if(𝑝 ∈ ℙ, 𝑝, 1) = 𝑝)
5450, 53eqtrd 2856 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → ∏𝑘 ∈ {𝑝}if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑝)
5554oveq2d 7166 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · ∏𝑘 ∈ {𝑝}if(𝑘 ∈ ℙ, 𝑘, 1)) = (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · 𝑝))
5640, 55eqtrd 2856 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) = (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · 𝑝))
5756breq2d 5070 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (𝑝 ∥ ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ↔ 𝑝 ∥ (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · 𝑝)))
5820, 57bitrd 281 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (𝑝 ∥ (#p𝑁) ↔ 𝑝 ∥ (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · 𝑝)))
5915, 58mpbird 259 . . 3 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 𝑝 ∥ (#p𝑁))
6059ex 415 . 2 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝𝑁𝑝 ∥ (#p𝑁)))
6160ralrimiva 3182 1 (𝑁 ∈ ℕ → ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 ∥ (#p𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  cdif 3932  cun 3933  cin 3934  c0 4290  ifcif 4466  {csn 4560   class class class wbr 5058  cfv 6349  (class class class)co 7150  Fincfn 8503  cc 10529  1c1 10532   · cmul 10536  cle 10670  cn 11632  0cn0 11891  cz 11975  ...cfz 12886  cprod 15253  cdvds 15601  cprime 16009  #pcprmo 16361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-prod 15254  df-dvds 15602  df-prm 16010  df-prmo 16362
This theorem is referenced by:  prmdvdsprmop  16373
  Copyright terms: Public domain W3C validator