MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdvdsprmo Structured version   Visualization version   GIF version

Theorem prmdvdsprmo 15526
Description: The primorial of a number is divisible by each prime less then or equal to the number. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 28-Aug-2020.)
Assertion
Ref Expression
prmdvdsprmo (𝑁 ∈ ℕ → ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 ∥ (#p𝑁)))
Distinct variable group:   𝑁,𝑝

Proof of Theorem prmdvdsprmo
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfi 12584 . . . . . . 7 (1...𝑁) ∈ Fin
2 diffi 8050 . . . . . . 7 ((1...𝑁) ∈ Fin → ((1...𝑁) ∖ {𝑝}) ∈ Fin)
31, 2mp1i 13 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → ((1...𝑁) ∖ {𝑝}) ∈ Fin)
4 eldifi 3689 . . . . . . . . 9 (𝑘 ∈ ((1...𝑁) ∖ {𝑝}) → 𝑘 ∈ (1...𝑁))
5 elfzelz 12164 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℤ)
64, 5syl 17 . . . . . . . 8 (𝑘 ∈ ((1...𝑁) ∖ {𝑝}) → 𝑘 ∈ ℤ)
7 1zzd 11237 . . . . . . . 8 (𝑘 ∈ ((1...𝑁) ∖ {𝑝}) → 1 ∈ ℤ)
86, 7ifcld 4076 . . . . . . 7 (𝑘 ∈ ((1...𝑁) ∖ {𝑝}) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℤ)
98adantl 480 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) ∧ 𝑘 ∈ ((1...𝑁) ∖ {𝑝})) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℤ)
103, 9fprodzcl 14465 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → ∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℤ)
11 prmz 15169 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
1211adantl 480 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
1312adantr 479 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 𝑝 ∈ ℤ)
14 dvdsmul2 14784 . . . . 5 ((∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℤ ∧ 𝑝 ∈ ℤ) → 𝑝 ∥ (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · 𝑝))
1510, 13, 14syl2anc 690 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 𝑝 ∥ (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · 𝑝))
16 nnnn0 11142 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
17 prmoval 15517 . . . . . . . 8 (𝑁 ∈ ℕ0 → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
1816, 17syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
1918ad2antrr 757 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
2019breq2d 4585 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (𝑝 ∥ (#p𝑁) ↔ 𝑝 ∥ ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1)))
21 neldifsnd 4258 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → ¬ 𝑝 ∈ ((1...𝑁) ∖ {𝑝}))
22 disjsn 4187 . . . . . . . . 9 ((((1...𝑁) ∖ {𝑝}) ∩ {𝑝}) = ∅ ↔ ¬ 𝑝 ∈ ((1...𝑁) ∖ {𝑝}))
2321, 22sylibr 222 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (((1...𝑁) ∖ {𝑝}) ∩ {𝑝}) = ∅)
24 prmnn 15168 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
2524adantl 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℕ)
2625anim1i 589 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (𝑝 ∈ ℕ ∧ 𝑝𝑁))
27 nnz 11228 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
28 fznn 12229 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑝 ∈ (1...𝑁) ↔ (𝑝 ∈ ℕ ∧ 𝑝𝑁)))
2927, 28syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑝 ∈ (1...𝑁) ↔ (𝑝 ∈ ℕ ∧ 𝑝𝑁)))
3029ad2antrr 757 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (𝑝 ∈ (1...𝑁) ↔ (𝑝 ∈ ℕ ∧ 𝑝𝑁)))
3126, 30mpbird 245 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 𝑝 ∈ (1...𝑁))
32 difsnid 4277 . . . . . . . . . 10 (𝑝 ∈ (1...𝑁) → (((1...𝑁) ∖ {𝑝}) ∪ {𝑝}) = (1...𝑁))
3332eqcomd 2611 . . . . . . . . 9 (𝑝 ∈ (1...𝑁) → (1...𝑁) = (((1...𝑁) ∖ {𝑝}) ∪ {𝑝}))
3431, 33syl 17 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (1...𝑁) = (((1...𝑁) ∖ {𝑝}) ∪ {𝑝}))
35 fzfid 12585 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (1...𝑁) ∈ Fin)
36 1zzd 11237 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → 1 ∈ ℤ)
375, 36ifcld 4076 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℤ)
3837zcnd 11311 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℂ)
3938adantl 480 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℂ)
4023, 34, 35, 39fprodsplit 14477 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) = (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · ∏𝑘 ∈ {𝑝}if(𝑘 ∈ ℙ, 𝑘, 1)))
41 simplr 787 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 𝑝 ∈ ℙ)
4225adantr 479 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 𝑝 ∈ ℕ)
4342nncnd 10879 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 𝑝 ∈ ℂ)
44 1cnd 9908 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 1 ∈ ℂ)
4543, 44ifcld 4076 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → if(𝑝 ∈ ℙ, 𝑝, 1) ∈ ℂ)
46 eleq1 2671 . . . . . . . . . . . 12 (𝑘 = 𝑝 → (𝑘 ∈ ℙ ↔ 𝑝 ∈ ℙ))
47 id 22 . . . . . . . . . . . 12 (𝑘 = 𝑝𝑘 = 𝑝)
4846, 47ifbieq1d 4054 . . . . . . . . . . 11 (𝑘 = 𝑝 → if(𝑘 ∈ ℙ, 𝑘, 1) = if(𝑝 ∈ ℙ, 𝑝, 1))
4948prodsn 14473 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ if(𝑝 ∈ ℙ, 𝑝, 1) ∈ ℂ) → ∏𝑘 ∈ {𝑝}if(𝑘 ∈ ℙ, 𝑘, 1) = if(𝑝 ∈ ℙ, 𝑝, 1))
5041, 45, 49syl2anc 690 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → ∏𝑘 ∈ {𝑝}if(𝑘 ∈ ℙ, 𝑘, 1) = if(𝑝 ∈ ℙ, 𝑝, 1))
51 simpr 475 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
5251iftrued 4039 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → if(𝑝 ∈ ℙ, 𝑝, 1) = 𝑝)
5352adantr 479 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → if(𝑝 ∈ ℙ, 𝑝, 1) = 𝑝)
5450, 53eqtrd 2639 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → ∏𝑘 ∈ {𝑝}if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑝)
5554oveq2d 6539 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · ∏𝑘 ∈ {𝑝}if(𝑘 ∈ ℙ, 𝑘, 1)) = (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · 𝑝))
5640, 55eqtrd 2639 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) = (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · 𝑝))
5756breq2d 4585 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (𝑝 ∥ ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ↔ 𝑝 ∥ (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · 𝑝)))
5820, 57bitrd 266 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (𝑝 ∥ (#p𝑁) ↔ 𝑝 ∥ (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · 𝑝)))
5915, 58mpbird 245 . . 3 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 𝑝 ∥ (#p𝑁))
6059ex 448 . 2 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝𝑁𝑝 ∥ (#p𝑁)))
6160ralrimiva 2944 1 (𝑁 ∈ ℕ → ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 ∥ (#p𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wcel 1975  wral 2891  cdif 3532  cun 3533  cin 3534  c0 3869  ifcif 4031  {csn 4120   class class class wbr 4573  cfv 5786  (class class class)co 6523  Fincfn 7814  cc 9786  1c1 9789   · cmul 9793  cle 9927  cn 10863  0cn0 11135  cz 11206  ...cfz 12148  cprod 14416  cdvds 14763  cprime 15165  #pcprmo 15515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865  ax-pre-sup 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-isom 5795  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-oadd 7424  df-er 7602  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-sup 8204  df-oi 8271  df-card 8621  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-div 10530  df-nn 10864  df-2 10922  df-3 10923  df-n0 11136  df-z 11207  df-uz 11516  df-rp 11661  df-fz 12149  df-fzo 12286  df-seq 12615  df-exp 12674  df-hash 12931  df-cj 13629  df-re 13630  df-im 13631  df-sqrt 13765  df-abs 13766  df-clim 14009  df-prod 14417  df-dvds 14764  df-prm 15166  df-prmo 15516
This theorem is referenced by:  prmdvdsprmop  15527
  Copyright terms: Public domain W3C validator