MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmexpb Structured version   Visualization version   GIF version

Theorem prmexpb 16064
Description: Two positive prime powers are equal iff the primes and the powers are equal. (Contributed by Paul Chapman, 30-Nov-2012.)
Assertion
Ref Expression
prmexpb (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃𝑀) = (𝑄𝑁) ↔ (𝑃 = 𝑄𝑀 = 𝑁)))

Proof of Theorem prmexpb
StepHypRef Expression
1 prmz 16021 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
21adantr 483 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → 𝑃 ∈ ℤ)
323ad2ant1 1129 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑃 ∈ ℤ)
4 simp2l 1195 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑀 ∈ ℕ)
5 iddvdsexp 15635 . . . . . 6 ((𝑃 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑃 ∥ (𝑃𝑀))
63, 4, 5syl2anc 586 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑃 ∥ (𝑃𝑀))
7 breq2 5072 . . . . . . 7 ((𝑃𝑀) = (𝑄𝑁) → (𝑃 ∥ (𝑃𝑀) ↔ 𝑃 ∥ (𝑄𝑁)))
873ad2ant3 1131 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → (𝑃 ∥ (𝑃𝑀) ↔ 𝑃 ∥ (𝑄𝑁)))
9 simp1l 1193 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑃 ∈ ℙ)
10 simp1r 1194 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑄 ∈ ℙ)
11 simp2r 1196 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑁 ∈ ℕ)
12 prmdvdsexpb 16062 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝑄𝑁) ↔ 𝑃 = 𝑄))
139, 10, 11, 12syl3anc 1367 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → (𝑃 ∥ (𝑄𝑁) ↔ 𝑃 = 𝑄))
148, 13bitrd 281 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → (𝑃 ∥ (𝑃𝑀) ↔ 𝑃 = 𝑄))
156, 14mpbid 234 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑃 = 𝑄)
163zred 12090 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑃 ∈ ℝ)
174nnzd 12089 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑀 ∈ ℤ)
1811nnzd 12089 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑁 ∈ ℤ)
19 prmgt1 16043 . . . . . . 7 (𝑃 ∈ ℙ → 1 < 𝑃)
2019ad2antrr 724 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 1 < 𝑃)
21203adant3 1128 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 1 < 𝑃)
22 simp3 1134 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → (𝑃𝑀) = (𝑄𝑁))
2315oveq1d 7173 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → (𝑃𝑁) = (𝑄𝑁))
2422, 23eqtr4d 2861 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → (𝑃𝑀) = (𝑃𝑁))
2516, 17, 18, 21, 24expcand 13619 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑀 = 𝑁)
2615, 25jca 514 . . 3 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → (𝑃 = 𝑄𝑀 = 𝑁))
27263expia 1117 . 2 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃𝑀) = (𝑄𝑁) → (𝑃 = 𝑄𝑀 = 𝑁)))
28 oveq12 7167 . 2 ((𝑃 = 𝑄𝑀 = 𝑁) → (𝑃𝑀) = (𝑄𝑁))
2927, 28impbid1 227 1 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃𝑀) = (𝑄𝑁) ↔ (𝑃 = 𝑄𝑀 = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5068  (class class class)co 7158  1c1 10540   < clt 10677  cn 11640  cz 11984  cexp 13432  cdvds 15609  cprime 16017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-dvds 15610  df-gcd 15846  df-prm 16018
This theorem is referenced by:  fsumvma  25791
  Copyright terms: Public domain W3C validator