MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmfac1 Structured version   Visualization version   GIF version

Theorem prmfac1 15355
Description: The factorial of a number only contains primes less than the base. (Contributed by Mario Carneiro, 6-Mar-2014.)
Assertion
Ref Expression
prmfac1 ((𝑁 ∈ ℕ0𝑃 ∈ ℙ ∧ 𝑃 ∥ (!‘𝑁)) → 𝑃𝑁)

Proof of Theorem prmfac1
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6148 . . . . . 6 (𝑥 = 0 → (!‘𝑥) = (!‘0))
21breq2d 4625 . . . . 5 (𝑥 = 0 → (𝑃 ∥ (!‘𝑥) ↔ 𝑃 ∥ (!‘0)))
3 breq2 4617 . . . . 5 (𝑥 = 0 → (𝑃𝑥𝑃 ≤ 0))
42, 3imbi12d 334 . . . 4 (𝑥 = 0 → ((𝑃 ∥ (!‘𝑥) → 𝑃𝑥) ↔ (𝑃 ∥ (!‘0) → 𝑃 ≤ 0)))
54imbi2d 330 . . 3 (𝑥 = 0 → ((𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑥) → 𝑃𝑥)) ↔ (𝑃 ∈ ℙ → (𝑃 ∥ (!‘0) → 𝑃 ≤ 0))))
6 fveq2 6148 . . . . . 6 (𝑥 = 𝑘 → (!‘𝑥) = (!‘𝑘))
76breq2d 4625 . . . . 5 (𝑥 = 𝑘 → (𝑃 ∥ (!‘𝑥) ↔ 𝑃 ∥ (!‘𝑘)))
8 breq2 4617 . . . . 5 (𝑥 = 𝑘 → (𝑃𝑥𝑃𝑘))
97, 8imbi12d 334 . . . 4 (𝑥 = 𝑘 → ((𝑃 ∥ (!‘𝑥) → 𝑃𝑥) ↔ (𝑃 ∥ (!‘𝑘) → 𝑃𝑘)))
109imbi2d 330 . . 3 (𝑥 = 𝑘 → ((𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑥) → 𝑃𝑥)) ↔ (𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑘) → 𝑃𝑘))))
11 fveq2 6148 . . . . . 6 (𝑥 = (𝑘 + 1) → (!‘𝑥) = (!‘(𝑘 + 1)))
1211breq2d 4625 . . . . 5 (𝑥 = (𝑘 + 1) → (𝑃 ∥ (!‘𝑥) ↔ 𝑃 ∥ (!‘(𝑘 + 1))))
13 breq2 4617 . . . . 5 (𝑥 = (𝑘 + 1) → (𝑃𝑥𝑃 ≤ (𝑘 + 1)))
1412, 13imbi12d 334 . . . 4 (𝑥 = (𝑘 + 1) → ((𝑃 ∥ (!‘𝑥) → 𝑃𝑥) ↔ (𝑃 ∥ (!‘(𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1))))
1514imbi2d 330 . . 3 (𝑥 = (𝑘 + 1) → ((𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑥) → 𝑃𝑥)) ↔ (𝑃 ∈ ℙ → (𝑃 ∥ (!‘(𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1)))))
16 fveq2 6148 . . . . . 6 (𝑥 = 𝑁 → (!‘𝑥) = (!‘𝑁))
1716breq2d 4625 . . . . 5 (𝑥 = 𝑁 → (𝑃 ∥ (!‘𝑥) ↔ 𝑃 ∥ (!‘𝑁)))
18 breq2 4617 . . . . 5 (𝑥 = 𝑁 → (𝑃𝑥𝑃𝑁))
1917, 18imbi12d 334 . . . 4 (𝑥 = 𝑁 → ((𝑃 ∥ (!‘𝑥) → 𝑃𝑥) ↔ (𝑃 ∥ (!‘𝑁) → 𝑃𝑁)))
2019imbi2d 330 . . 3 (𝑥 = 𝑁 → ((𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑥) → 𝑃𝑥)) ↔ (𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑁) → 𝑃𝑁))))
21 fac0 13003 . . . . 5 (!‘0) = 1
2221breq2i 4621 . . . 4 (𝑃 ∥ (!‘0) ↔ 𝑃 ∥ 1)
23 nprmdvds1 15342 . . . . 5 (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1)
2423pm2.21d 118 . . . 4 (𝑃 ∈ ℙ → (𝑃 ∥ 1 → 𝑃 ≤ 0))
2522, 24syl5bi 232 . . 3 (𝑃 ∈ ℙ → (𝑃 ∥ (!‘0) → 𝑃 ≤ 0))
26 facp1 13005 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
2726adantr 481 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
2827breq2d 4625 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 ∥ (!‘(𝑘 + 1)) ↔ 𝑃 ∥ ((!‘𝑘) · (𝑘 + 1))))
29 simpr 477 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → 𝑃 ∈ ℙ)
30 faccl 13010 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
3130adantr 481 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (!‘𝑘) ∈ ℕ)
3231nnzd 11425 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (!‘𝑘) ∈ ℤ)
33 nn0p1nn 11276 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
3433adantr 481 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑘 + 1) ∈ ℕ)
3534nnzd 11425 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑘 + 1) ∈ ℤ)
36 euclemma 15349 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (!‘𝑘) ∈ ℤ ∧ (𝑘 + 1) ∈ ℤ) → (𝑃 ∥ ((!‘𝑘) · (𝑘 + 1)) ↔ (𝑃 ∥ (!‘𝑘) ∨ 𝑃 ∥ (𝑘 + 1))))
3729, 32, 35, 36syl3anc 1323 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 ∥ ((!‘𝑘) · (𝑘 + 1)) ↔ (𝑃 ∥ (!‘𝑘) ∨ 𝑃 ∥ (𝑘 + 1))))
3828, 37bitrd 268 . . . . . . 7 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 ∥ (!‘(𝑘 + 1)) ↔ (𝑃 ∥ (!‘𝑘) ∨ 𝑃 ∥ (𝑘 + 1))))
39 nn0re 11245 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
4039adantr 481 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → 𝑘 ∈ ℝ)
4140lep1d 10899 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → 𝑘 ≤ (𝑘 + 1))
42 prmz 15313 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
4342adantl 482 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → 𝑃 ∈ ℤ)
4443zred 11426 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → 𝑃 ∈ ℝ)
4534nnred 10979 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑘 + 1) ∈ ℝ)
46 letr 10075 . . . . . . . . . . . 12 ((𝑃 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → ((𝑃𝑘𝑘 ≤ (𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1)))
4744, 40, 45, 46syl3anc 1323 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → ((𝑃𝑘𝑘 ≤ (𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1)))
4841, 47mpan2d 709 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃𝑘𝑃 ≤ (𝑘 + 1)))
4948imim2d 57 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → ((𝑃 ∥ (!‘𝑘) → 𝑃𝑘) → (𝑃 ∥ (!‘𝑘) → 𝑃 ≤ (𝑘 + 1))))
5049com23 86 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 ∥ (!‘𝑘) → ((𝑃 ∥ (!‘𝑘) → 𝑃𝑘) → 𝑃 ≤ (𝑘 + 1))))
51 dvdsle 14956 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ (𝑘 + 1) ∈ ℕ) → (𝑃 ∥ (𝑘 + 1) → 𝑃 ≤ (𝑘 + 1)))
5243, 34, 51syl2anc 692 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 ∥ (𝑘 + 1) → 𝑃 ≤ (𝑘 + 1)))
5352a1dd 50 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 ∥ (𝑘 + 1) → ((𝑃 ∥ (!‘𝑘) → 𝑃𝑘) → 𝑃 ≤ (𝑘 + 1))))
5450, 53jaod 395 . . . . . . 7 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → ((𝑃 ∥ (!‘𝑘) ∨ 𝑃 ∥ (𝑘 + 1)) → ((𝑃 ∥ (!‘𝑘) → 𝑃𝑘) → 𝑃 ≤ (𝑘 + 1))))
5538, 54sylbid 230 . . . . . 6 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 ∥ (!‘(𝑘 + 1)) → ((𝑃 ∥ (!‘𝑘) → 𝑃𝑘) → 𝑃 ≤ (𝑘 + 1))))
5655com23 86 . . . . 5 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → ((𝑃 ∥ (!‘𝑘) → 𝑃𝑘) → (𝑃 ∥ (!‘(𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1))))
5756ex 450 . . . 4 (𝑘 ∈ ℕ0 → (𝑃 ∈ ℙ → ((𝑃 ∥ (!‘𝑘) → 𝑃𝑘) → (𝑃 ∥ (!‘(𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1)))))
5857a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑘) → 𝑃𝑘)) → (𝑃 ∈ ℙ → (𝑃 ∥ (!‘(𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1)))))
595, 10, 15, 20, 25, 58nn0ind 11416 . 2 (𝑁 ∈ ℕ0 → (𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑁) → 𝑃𝑁)))
60593imp 1254 1 ((𝑁 ∈ ℕ0𝑃 ∈ ℙ ∧ 𝑃 ∥ (!‘𝑁)) → 𝑃𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987   class class class wbr 4613  cfv 5847  (class class class)co 6604  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885  cle 10019  cn 10964  0cn0 11236  cz 11321  !cfa 13000  cdvds 14907  cprime 15309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-fac 13001  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-dvds 14908  df-gcd 15141  df-prm 15310
This theorem is referenced by:  prmndvdsfaclt  15359  chtublem  24836  bposlem3  24911
  Copyright terms: Public domain W3C validator