MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplem3 Structured version   Visualization version   GIF version

Theorem prmgaplem3 16391
Description: Lemma for prmgap 16397. (Contributed by AV, 9-Aug-2020.)
Hypothesis
Ref Expression
prmgaplem3.a 𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁}
Assertion
Ref Expression
prmgaplem3 (𝑁 ∈ (ℤ‘3) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑁,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝑁(𝑥,𝑦)

Proof of Theorem prmgaplem3
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4058 . . . . 5 {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℙ
21a1i 11 . . . 4 (𝑁 ∈ (ℤ‘3) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℙ)
3 prmssnn 16022 . . . . 5 ℙ ⊆ ℕ
4 nnssre 11644 . . . . 5 ℕ ⊆ ℝ
53, 4sstri 3978 . . . 4 ℙ ⊆ ℝ
62, 5sstrdi 3981 . . 3 (𝑁 ∈ (ℤ‘3) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℝ)
7 fzofi 13345 . . . 4 (0..^𝑁) ∈ Fin
8 breq1 5071 . . . . . . 7 (𝑝 = 𝑖 → (𝑝 < 𝑁𝑖 < 𝑁))
98elrab 3682 . . . . . 6 (𝑖 ∈ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ↔ (𝑖 ∈ ℙ ∧ 𝑖 < 𝑁))
10 prmnn 16020 . . . . . . . . . 10 (𝑖 ∈ ℙ → 𝑖 ∈ ℕ)
1110nnnn0d 11958 . . . . . . . . 9 (𝑖 ∈ ℙ → 𝑖 ∈ ℕ0)
1211ad2antrl 726 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑖 ∈ ℙ ∧ 𝑖 < 𝑁)) → 𝑖 ∈ ℕ0)
13 eluzge3nn 12293 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
1413adantr 483 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑖 ∈ ℙ ∧ 𝑖 < 𝑁)) → 𝑁 ∈ ℕ)
15 simprr 771 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑖 ∈ ℙ ∧ 𝑖 < 𝑁)) → 𝑖 < 𝑁)
16 elfzo0 13081 . . . . . . . 8 (𝑖 ∈ (0..^𝑁) ↔ (𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁))
1712, 14, 15, 16syl3anbrc 1339 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ (𝑖 ∈ ℙ ∧ 𝑖 < 𝑁)) → 𝑖 ∈ (0..^𝑁))
1817ex 415 . . . . . 6 (𝑁 ∈ (ℤ‘3) → ((𝑖 ∈ ℙ ∧ 𝑖 < 𝑁) → 𝑖 ∈ (0..^𝑁)))
199, 18syl5bi 244 . . . . 5 (𝑁 ∈ (ℤ‘3) → (𝑖 ∈ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} → 𝑖 ∈ (0..^𝑁)))
2019ssrdv 3975 . . . 4 (𝑁 ∈ (ℤ‘3) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ (0..^𝑁))
21 ssfi 8740 . . . 4 (((0..^𝑁) ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ (0..^𝑁)) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ∈ Fin)
227, 20, 21sylancr 589 . . 3 (𝑁 ∈ (ℤ‘3) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ∈ Fin)
23 breq1 5071 . . . . 5 (𝑝 = 2 → (𝑝 < 𝑁 ↔ 2 < 𝑁))
24 2prm 16038 . . . . . 6 2 ∈ ℙ
2524a1i 11 . . . . 5 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℙ)
26 eluz2 12252 . . . . . 6 (𝑁 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁))
27 df-3 11704 . . . . . . . . . 10 3 = (2 + 1)
2827breq1i 5075 . . . . . . . . 9 (3 ≤ 𝑁 ↔ (2 + 1) ≤ 𝑁)
29 2z 12017 . . . . . . . . . . 11 2 ∈ ℤ
30 zltp1le 12035 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 < 𝑁 ↔ (2 + 1) ≤ 𝑁))
3129, 30mpan 688 . . . . . . . . . 10 (𝑁 ∈ ℤ → (2 < 𝑁 ↔ (2 + 1) ≤ 𝑁))
3231biimprd 250 . . . . . . . . 9 (𝑁 ∈ ℤ → ((2 + 1) ≤ 𝑁 → 2 < 𝑁))
3328, 32syl5bi 244 . . . . . . . 8 (𝑁 ∈ ℤ → (3 ≤ 𝑁 → 2 < 𝑁))
3433imp 409 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 < 𝑁)
35343adant1 1126 . . . . . 6 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 < 𝑁)
3626, 35sylbi 219 . . . . 5 (𝑁 ∈ (ℤ‘3) → 2 < 𝑁)
3723, 25, 36elrabd 3684 . . . 4 (𝑁 ∈ (ℤ‘3) → 2 ∈ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁})
3837ne0d 4303 . . 3 (𝑁 ∈ (ℤ‘3) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ≠ ∅)
39 prmgaplem3.a . . . 4 𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁}
40 sseq1 3994 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} → (𝐴 ⊆ ℝ ↔ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℝ))
41 eleq1 2902 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} → (𝐴 ∈ Fin ↔ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ∈ Fin))
42 neeq1 3080 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} → (𝐴 ≠ ∅ ↔ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ≠ ∅))
4340, 41, 423anbi123d 1432 . . . 4 (𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} → ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ↔ ({𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℝ ∧ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ≠ ∅)))
4439, 43ax-mp 5 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ↔ ({𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℝ ∧ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ≠ ∅))
456, 22, 38, 44syl3anbrc 1339 . 2 (𝑁 ∈ (ℤ‘3) → (𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅))
46 fimaxre 11586 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
4745, 46syl 17 1 (𝑁 ∈ (ℤ‘3) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  {crab 3144  wss 3938  c0 4293   class class class wbr 5068  cfv 6357  (class class class)co 7158  Fincfn 8511  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   < clt 10677  cle 10678  cn 11640  2c2 11695  3c3 11696  0cn0 11900  cz 11984  cuz 12246  ..^cfzo 13036  cprime 16017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-dvds 15610  df-prm 16018
This theorem is referenced by:  prmgaplem5  16393
  Copyright terms: Public domain W3C validator