MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplem4 Structured version   Visualization version   GIF version

Theorem prmgaplem4 16382
Description: Lemma for prmgap 16387. (Contributed by AV, 10-Aug-2020.)
Hypothesis
Ref Expression
prmgaplem4.a 𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)}
Assertion
Ref Expression
prmgaplem4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑁,𝑝   𝑃,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝑃(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem prmgaplem4
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4054 . . . . 5 {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℙ
21a1i 11 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℙ)
3 prmssnn 16012 . . . . 5 ℙ ⊆ ℕ
4 nnssre 11634 . . . . 5 ℕ ⊆ ℝ
53, 4sstri 3974 . . . 4 ℙ ⊆ ℝ
62, 5sstrdi 3977 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℝ)
7 fzfid 13333 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑁...𝑃) ∈ Fin)
8 breq2 5061 . . . . . . . 8 (𝑝 = 𝑖 → (𝑁 < 𝑝𝑁 < 𝑖))
9 breq1 5060 . . . . . . . 8 (𝑝 = 𝑖 → (𝑝𝑃𝑖𝑃))
108, 9anbi12d 632 . . . . . . 7 (𝑝 = 𝑖 → ((𝑁 < 𝑝𝑝𝑃) ↔ (𝑁 < 𝑖𝑖𝑃)))
1110elrab 3678 . . . . . 6 (𝑖 ∈ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ↔ (𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃)))
12 nnz 11996 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
13 prmz 16011 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1412, 13anim12i 614 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ))
15143adant3 1127 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ))
16 prmz 16011 . . . . . . . . . . 11 (𝑖 ∈ ℙ → 𝑖 ∈ ℤ)
1716adantr 483 . . . . . . . . . 10 ((𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃)) → 𝑖 ∈ ℤ)
1815, 17anim12i 614 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) ∧ (𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃))) → ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑖 ∈ ℤ))
19 df-3an 1084 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑖 ∈ ℤ) ↔ ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑖 ∈ ℤ))
2018, 19sylibr 236 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) ∧ (𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃))) → (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑖 ∈ ℤ))
21 nnre 11637 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2221adantr 483 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℝ)
235sseli 3961 . . . . . . . . . . . . 13 (𝑖 ∈ ℙ → 𝑖 ∈ ℝ)
24 ltle 10721 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝑖 ∈ ℝ) → (𝑁 < 𝑖𝑁𝑖))
2522, 23, 24syl2an 597 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑖 ∈ ℙ) → (𝑁 < 𝑖𝑁𝑖))
2625anim1d 612 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑖 ∈ ℙ) → ((𝑁 < 𝑖𝑖𝑃) → (𝑁𝑖𝑖𝑃)))
2726ex 415 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑖 ∈ ℙ → ((𝑁 < 𝑖𝑖𝑃) → (𝑁𝑖𝑖𝑃))))
28273adant3 1127 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑖 ∈ ℙ → ((𝑁 < 𝑖𝑖𝑃) → (𝑁𝑖𝑖𝑃))))
2928imp32 421 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) ∧ (𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃))) → (𝑁𝑖𝑖𝑃))
30 elfz2 12891 . . . . . . . 8 (𝑖 ∈ (𝑁...𝑃) ↔ ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑁𝑖𝑖𝑃)))
3120, 29, 30sylanbrc 585 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) ∧ (𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃))) → 𝑖 ∈ (𝑁...𝑃))
3231ex 415 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → ((𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃)) → 𝑖 ∈ (𝑁...𝑃)))
3311, 32syl5bi 244 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑖 ∈ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} → 𝑖 ∈ (𝑁...𝑃)))
3433ssrdv 3971 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ (𝑁...𝑃))
357, 34ssfid 8733 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ∈ Fin)
36 breq2 5061 . . . . . 6 (𝑝 = 𝑃 → (𝑁 < 𝑝𝑁 < 𝑃))
37 breq1 5060 . . . . . 6 (𝑝 = 𝑃 → (𝑝𝑃𝑃𝑃))
3836, 37anbi12d 632 . . . . 5 (𝑝 = 𝑃 → ((𝑁 < 𝑝𝑝𝑃) ↔ (𝑁 < 𝑃𝑃𝑃)))
39 simp2 1132 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → 𝑃 ∈ ℙ)
40 prmnn 16010 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
4140nnred 11645 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
4241leidd 11198 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃𝑃)
4342anim1ci 617 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑁 < 𝑃𝑃𝑃))
44433adant1 1125 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑁 < 𝑃𝑃𝑃))
4538, 39, 44elrabd 3680 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → 𝑃 ∈ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)})
4645ne0d 4299 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ≠ ∅)
47 prmgaplem4.a . . . 4 𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)}
48 sseq1 3990 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} → (𝐴 ⊆ ℝ ↔ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℝ))
49 eleq1 2898 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} → (𝐴 ∈ Fin ↔ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ∈ Fin))
50 neeq1 3076 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} → (𝐴 ≠ ∅ ↔ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ≠ ∅))
5148, 49, 503anbi123d 1430 . . . 4 (𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} → ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ↔ ({𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℝ ∧ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ≠ ∅)))
5247, 51ax-mp 5 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ↔ ({𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℝ ∧ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ≠ ∅))
536, 35, 46, 52syl3anbrc 1338 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅))
54 fiminre 11580 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
5553, 54syl 17 1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wne 3014  wral 3136  wrex 3137  {crab 3140  wss 3934  c0 4289   class class class wbr 5057  (class class class)co 7148  Fincfn 8501  cr 10528   < clt 10667  cle 10668  cn 11630  cz 11973  ...cfz 12884  cprime 16007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-prm 16008
This theorem is referenced by:  prmgaplem6  16384
  Copyright terms: Public domain W3C validator