MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplem6 Structured version   Visualization version   GIF version

Theorem prmgaplem6 16384
Description: Lemma for prmgap 16387: for each positive integer there is a greater prime closest to this integer, i.e. there is a greater prime and no other prime is between this prime and the integer. (Contributed by AV, 10-Aug-2020.)
Assertion
Ref Expression
prmgaplem6 (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ))
Distinct variable group:   𝑁,𝑝,𝑧

Proof of Theorem prmgaplem6
Dummy variables 𝑛 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmunb 16242 . 2 (𝑁 ∈ ℕ → ∃𝑛 ∈ ℙ 𝑁 < 𝑛)
2 eqid 2819 . . . . 5 {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} = {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}
32prmgaplem4 16382 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → ∃𝑝 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧)
4 breq2 5061 . . . . . . . . 9 (𝑞 = 𝑝 → (𝑁 < 𝑞𝑁 < 𝑝))
5 breq1 5060 . . . . . . . . 9 (𝑞 = 𝑝 → (𝑞𝑛𝑝𝑛))
64, 5anbi12d 632 . . . . . . . 8 (𝑞 = 𝑝 → ((𝑁 < 𝑞𝑞𝑛) ↔ (𝑁 < 𝑝𝑝𝑛)))
76elrab 3678 . . . . . . 7 (𝑝 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} ↔ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))
8 simplrl 775 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧) → 𝑝 ∈ ℙ)
9 simprrl 779 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → 𝑁 < 𝑝)
109adantr 483 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧) → 𝑁 < 𝑝)
11 breq2 5061 . . . . . . . . . . . . . . . . . 18 (𝑞 = 𝑧 → (𝑁 < 𝑞𝑁 < 𝑧))
12 breq1 5060 . . . . . . . . . . . . . . . . . 18 (𝑞 = 𝑧 → (𝑞𝑛𝑧𝑛))
1311, 12anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑞 = 𝑧 → ((𝑁 < 𝑞𝑞𝑛) ↔ (𝑁 < 𝑧𝑧𝑛)))
14 simpll 765 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 ∈ ((𝑁 + 1)..^𝑝)) → 𝑧 ∈ ℙ)
15 elfzo2 13033 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ((𝑁 + 1)..^𝑝) ↔ (𝑧 ∈ (ℤ‘(𝑁 + 1)) ∧ 𝑝 ∈ ℤ ∧ 𝑧 < 𝑝))
16 eluz2 12241 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ (ℤ‘(𝑁 + 1)) ↔ ((𝑁 + 1) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑧))
17 nnz 11996 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
18 prmz 16011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 ∈ ℙ → 𝑧 ∈ ℤ)
19 zltp1le 12024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑁 < 𝑧 ↔ (𝑁 + 1) ≤ 𝑧))
2017, 18, 19syl2an 597 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℙ) → (𝑁 < 𝑧 ↔ (𝑁 + 1) ≤ 𝑧))
2120exbiri 809 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ ℕ → (𝑧 ∈ ℙ → ((𝑁 + 1) ≤ 𝑧𝑁 < 𝑧)))
22213ad2ant1 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑧 ∈ ℙ → ((𝑁 + 1) ≤ 𝑧𝑁 < 𝑧)))
2322adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → (𝑧 ∈ ℙ → ((𝑁 + 1) ≤ 𝑧𝑁 < 𝑧)))
2423impcom 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → ((𝑁 + 1) ≤ 𝑧𝑁 < 𝑧))
2524com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 + 1) ≤ 𝑧 → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → 𝑁 < 𝑧))
2625adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → 𝑁 < 𝑧))
2726adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) ∧ 𝑧 < 𝑝) → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → 𝑁 < 𝑧))
2827imp 409 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) ∧ 𝑧 < 𝑝) ∧ (𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))))) → 𝑁 < 𝑧)
29 prmnn 16010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑧 ∈ ℙ → 𝑧 ∈ ℕ)
3029nnred 11645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑧 ∈ ℙ → 𝑧 ∈ ℝ)
3130ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑛 ∈ ℙ ∧ (𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ)) → 𝑧 ∈ ℝ)
32 prmnn 16010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
3332nnred 11645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
3433adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℝ)
3534adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑛 ∈ ℙ ∧ (𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ)) → 𝑝 ∈ ℝ)
36 prmnn 16010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑛 ∈ ℙ → 𝑛 ∈ ℕ)
3736nnred 11645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑛 ∈ ℙ → 𝑛 ∈ ℝ)
3837adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑛 ∈ ℙ ∧ (𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ)) → 𝑛 ∈ ℝ)
39 ltleletr 10725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑧 ∈ ℝ ∧ 𝑝 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((𝑧 < 𝑝𝑝𝑛) → 𝑧𝑛))
4031, 35, 38, 39syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑛 ∈ ℙ ∧ (𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ)) → ((𝑧 < 𝑝𝑝𝑛) → 𝑧𝑛))
4140exp4b 433 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑛 ∈ ℙ → ((𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ) → (𝑧 < 𝑝 → (𝑝𝑛𝑧𝑛))))
42413ad2ant2 1129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → ((𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ) → (𝑧 < 𝑝 → (𝑝𝑛𝑧𝑛))))
4342expdcom 417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 ∈ ℙ → (𝑝 ∈ ℙ → ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑧 < 𝑝 → (𝑝𝑛𝑧𝑛)))))
4443com45 97 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 ∈ ℙ → (𝑝 ∈ ℙ → ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑝𝑛 → (𝑧 < 𝑝𝑧𝑛)))))
4544com14 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑝𝑛 → (𝑝 ∈ ℙ → ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑧 ∈ ℙ → (𝑧 < 𝑝𝑧𝑛)))))
4645adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 < 𝑝𝑝𝑛) → (𝑝 ∈ ℙ → ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑧 ∈ ℙ → (𝑧 < 𝑝𝑧𝑛)))))
4746impcom 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)) → ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑧 ∈ ℙ → (𝑧 < 𝑝𝑧𝑛))))
4847impcom 410 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → (𝑧 ∈ ℙ → (𝑧 < 𝑝𝑧𝑛)))
4948impcom 410 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑧 < 𝑝𝑧𝑛))
5049adantld 493 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → ((((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) ∧ 𝑧 < 𝑝) → 𝑧𝑛))
5150impcom 410 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) ∧ 𝑧 < 𝑝) ∧ (𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))))) → 𝑧𝑛)
5228, 51jca 514 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) ∧ 𝑧 < 𝑝) ∧ (𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))))) → (𝑁 < 𝑧𝑧𝑛))
5352exp41 437 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 + 1) ≤ 𝑧 → (𝑝 ∈ ℤ → (𝑧 < 𝑝 → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑁 < 𝑧𝑧𝑛)))))
54533ad2ant3 1130 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 + 1) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑧) → (𝑝 ∈ ℤ → (𝑧 < 𝑝 → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑁 < 𝑧𝑧𝑛)))))
5516, 54sylbi 219 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (ℤ‘(𝑁 + 1)) → (𝑝 ∈ ℤ → (𝑧 < 𝑝 → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑁 < 𝑧𝑧𝑛)))))
56553imp 1106 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ (ℤ‘(𝑁 + 1)) ∧ 𝑝 ∈ ℤ ∧ 𝑧 < 𝑝) → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑁 < 𝑧𝑧𝑛)))
5715, 56sylbi 219 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ((𝑁 + 1)..^𝑝) → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑁 < 𝑧𝑧𝑛)))
5857impcom 410 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 ∈ ((𝑁 + 1)..^𝑝)) → (𝑁 < 𝑧𝑧𝑛))
5913, 14, 58elrabd 3680 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 ∈ ((𝑁 + 1)..^𝑝)) → 𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)})
60 elfzolt2 13039 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 < 𝑝)
6133ad2antrl 726 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → 𝑝 ∈ ℝ)
62 ltnle 10712 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (𝑧 < 𝑝 ↔ ¬ 𝑝𝑧))
6362biimpd 231 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (𝑧 < 𝑝 → ¬ 𝑝𝑧))
6430, 61, 63syl2an 597 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑧 < 𝑝 → ¬ 𝑝𝑧))
6564imp 409 . . . . . . . . . . . . . . . . . 18 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 < 𝑝) → ¬ 𝑝𝑧)
6665pm2.21d 121 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 < 𝑝) → (𝑝𝑧𝑧 ∉ ℙ))
6760, 66sylan2 594 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 ∈ ((𝑁 + 1)..^𝑝)) → (𝑝𝑧𝑧 ∉ ℙ))
6859, 67embantd 59 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 ∈ ((𝑁 + 1)..^𝑝)) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → 𝑧 ∉ ℙ))
6968ex 415 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → 𝑧 ∉ ℙ)))
7069com23 86 . . . . . . . . . . . . 13 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ)))
7170ex 415 . . . . . . . . . . . 12 (𝑧 ∈ ℙ → (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ))))
72 df-nel 3122 . . . . . . . . . . . . 13 (𝑧 ∉ ℙ ↔ ¬ 𝑧 ∈ ℙ)
73 2a1 28 . . . . . . . . . . . . . 14 (𝑧 ∉ ℙ → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ)))
7473a1d 25 . . . . . . . . . . . . 13 (𝑧 ∉ ℙ → (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ))))
7572, 74sylbir 237 . . . . . . . . . . . 12 𝑧 ∈ ℙ → (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ))))
7671, 75pm2.61i 184 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ)))
7776ralimdv2 3174 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → (∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧 → ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ))
7877imp 409 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧) → ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)
798, 10, 78jca32 518 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧) → (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)))
8079exp31 422 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → ((𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)) → (∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧 → (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)))))
817, 80syl5bi 244 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑝 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → (∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧 → (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)))))
8281impd 413 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → ((𝑝 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧) → (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ))))
8382reximdv2 3269 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (∃𝑝 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧 → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)))
843, 83mpd 15 . . 3 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ))
8584rexlimdv3a 3284 . 2 (𝑁 ∈ ℕ → (∃𝑛 ∈ ℙ 𝑁 < 𝑛 → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)))
861, 85mpd 15 1 (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1082  wcel 2108  wnel 3121  wral 3136  wrex 3137  {crab 3140   class class class wbr 5057  cfv 6348  (class class class)co 7148  cr 10528  1c1 10530   + caddc 10532   < clt 10667  cle 10668  cn 11630  cz 11973  cuz 12235  ..^cfzo 13025  cprime 16007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12885  df-fzo 13026  df-seq 13362  df-exp 13422  df-fac 13626  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-prm 16008
This theorem is referenced by:  prmgaplem7  16385
  Copyright terms: Public domain W3C validator