MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmreclem1 Structured version   Visualization version   GIF version

Theorem prmreclem1 15342
Description: Lemma for prmrec 15348. Properties of the "square part" function, which extracts the 𝑚 of the decomposition 𝑁 = 𝑟𝑚↑2, with 𝑚 maximal and 𝑟 squarefree. (Contributed by Mario Carneiro, 5-Aug-2014.)
Hypothesis
Ref Expression
prmreclem1.1 𝑄 = (𝑛 ∈ ℕ ↦ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < ))
Assertion
Ref Expression
prmreclem1 (𝑁 ∈ ℕ → ((𝑄𝑁) ∈ ℕ ∧ ((𝑄𝑁)↑2) ∥ 𝑁 ∧ (𝐾 ∈ (ℤ‘2) → ¬ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2)))))
Distinct variable groups:   𝐾,𝑟   𝑛,𝑟,𝑁   𝑄,𝑟
Allowed substitution hints:   𝑄(𝑛)   𝐾(𝑛)

Proof of Theorem prmreclem1
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3554 . . 3 {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ⊆ ℕ
2 breq2 4485 . . . . . . 7 (𝑛 = 𝑁 → ((𝑟↑2) ∥ 𝑛 ↔ (𝑟↑2) ∥ 𝑁))
32rabbidv 3068 . . . . . 6 (𝑛 = 𝑁 → {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛} = {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁})
43supeq1d 8111 . . . . 5 (𝑛 = 𝑁 → sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < ) = sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < ))
5 prmreclem1.1 . . . . 5 𝑄 = (𝑛 ∈ ℕ ↦ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < ))
6 ltso 9868 . . . . . 6 < Or ℝ
76supex 8128 . . . . 5 sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < ) ∈ V
84, 5, 7fvmpt 6075 . . . 4 (𝑁 ∈ ℕ → (𝑄𝑁) = sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < ))
9 nnssz 11138 . . . . . . 7 ℕ ⊆ ℤ
101, 9sstri 3481 . . . . . 6 {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ⊆ ℤ
1110a1i 11 . . . . 5 (𝑁 ∈ ℕ → {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ⊆ ℤ)
12 1nn 10786 . . . . . . . 8 1 ∈ ℕ
1312a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 1 ∈ ℕ)
14 nnz 11140 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
15 1dvds 14703 . . . . . . . 8 (𝑁 ∈ ℤ → 1 ∥ 𝑁)
1614, 15syl 17 . . . . . . 7 (𝑁 ∈ ℕ → 1 ∥ 𝑁)
17 oveq1 6433 . . . . . . . . . 10 (𝑟 = 1 → (𝑟↑2) = (1↑2))
18 sq1 12688 . . . . . . . . . 10 (1↑2) = 1
1917, 18syl6eq 2564 . . . . . . . . 9 (𝑟 = 1 → (𝑟↑2) = 1)
2019breq1d 4491 . . . . . . . 8 (𝑟 = 1 → ((𝑟↑2) ∥ 𝑁 ↔ 1 ∥ 𝑁))
2120elrab 3235 . . . . . . 7 (1 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ↔ (1 ∈ ℕ ∧ 1 ∥ 𝑁))
2213, 16, 21sylanbrc 694 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁})
23 ne0i 3783 . . . . . 6 (1 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} → {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ≠ ∅)
2422, 23syl 17 . . . . 5 (𝑁 ∈ ℕ → {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ≠ ∅)
25 nnz 11140 . . . . . . . . . . 11 (𝑧 ∈ ℕ → 𝑧 ∈ ℤ)
26 zsqcl 12664 . . . . . . . . . . 11 (𝑧 ∈ ℤ → (𝑧↑2) ∈ ℤ)
2725, 26syl 17 . . . . . . . . . 10 (𝑧 ∈ ℕ → (𝑧↑2) ∈ ℤ)
28 id 22 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
29 dvdsle 14739 . . . . . . . . . 10 (((𝑧↑2) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑧↑2) ∥ 𝑁 → (𝑧↑2) ≤ 𝑁))
3027, 28, 29syl2anr 493 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧↑2) ∥ 𝑁 → (𝑧↑2) ≤ 𝑁))
31 nnlesq 12698 . . . . . . . . . . 11 (𝑧 ∈ ℕ → 𝑧 ≤ (𝑧↑2))
3231adantl 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → 𝑧 ≤ (𝑧↑2))
33 nnre 10782 . . . . . . . . . . . 12 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ)
3433adantl 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → 𝑧 ∈ ℝ)
3534resqcld 12765 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧↑2) ∈ ℝ)
36 nnre 10782 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
3736adantr 479 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → 𝑁 ∈ ℝ)
38 letr 9881 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∧ (𝑧↑2) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑧 ≤ (𝑧↑2) ∧ (𝑧↑2) ≤ 𝑁) → 𝑧𝑁))
3934, 35, 37, 38syl3anc 1317 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 ≤ (𝑧↑2) ∧ (𝑧↑2) ≤ 𝑁) → 𝑧𝑁))
4032, 39mpand 706 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧↑2) ≤ 𝑁𝑧𝑁))
4130, 40syld 45 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧↑2) ∥ 𝑁𝑧𝑁))
4241ralrimiva 2853 . . . . . . 7 (𝑁 ∈ ℕ → ∀𝑧 ∈ ℕ ((𝑧↑2) ∥ 𝑁𝑧𝑁))
43 oveq1 6433 . . . . . . . . 9 (𝑟 = 𝑧 → (𝑟↑2) = (𝑧↑2))
4443breq1d 4491 . . . . . . . 8 (𝑟 = 𝑧 → ((𝑟↑2) ∥ 𝑁 ↔ (𝑧↑2) ∥ 𝑁))
4544ralrab 3239 . . . . . . 7 (∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧𝑁 ↔ ∀𝑧 ∈ ℕ ((𝑧↑2) ∥ 𝑁𝑧𝑁))
4642, 45sylibr 222 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧𝑁)
47 breq2 4485 . . . . . . . 8 (𝑥 = 𝑁 → (𝑧𝑥𝑧𝑁))
4847ralbidv 2873 . . . . . . 7 (𝑥 = 𝑁 → (∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧𝑥 ↔ ∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧𝑁))
4948rspcev 3186 . . . . . 6 ((𝑁 ∈ ℤ ∧ ∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧𝑁) → ∃𝑥 ∈ ℤ ∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧𝑥)
5014, 46, 49syl2anc 690 . . . . 5 (𝑁 ∈ ℕ → ∃𝑥 ∈ ℤ ∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧𝑥)
51 suprzcl2 11520 . . . . 5 (({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ⊆ ℤ ∧ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧𝑥) → sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < ) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁})
5211, 24, 50, 51syl3anc 1317 . . . 4 (𝑁 ∈ ℕ → sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < ) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁})
538, 52eqeltrd 2592 . . 3 (𝑁 ∈ ℕ → (𝑄𝑁) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁})
541, 53sseldi 3470 . 2 (𝑁 ∈ ℕ → (𝑄𝑁) ∈ ℕ)
55 oveq1 6433 . . . . . 6 (𝑧 = (𝑄𝑁) → (𝑧↑2) = ((𝑄𝑁)↑2))
5655breq1d 4491 . . . . 5 (𝑧 = (𝑄𝑁) → ((𝑧↑2) ∥ 𝑁 ↔ ((𝑄𝑁)↑2) ∥ 𝑁))
5744cbvrabv 3076 . . . . 5 {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} = {𝑧 ∈ ℕ ∣ (𝑧↑2) ∥ 𝑁}
5856, 57elrab2 3237 . . . 4 ((𝑄𝑁) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ↔ ((𝑄𝑁) ∈ ℕ ∧ ((𝑄𝑁)↑2) ∥ 𝑁))
5953, 58sylib 206 . . 3 (𝑁 ∈ ℕ → ((𝑄𝑁) ∈ ℕ ∧ ((𝑄𝑁)↑2) ∥ 𝑁))
6059simprd 477 . 2 (𝑁 ∈ ℕ → ((𝑄𝑁)↑2) ∥ 𝑁)
6154adantr 479 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → (𝑄𝑁) ∈ ℕ)
6261nncnd 10791 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → (𝑄𝑁) ∈ ℂ)
6362mulid1d 9812 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → ((𝑄𝑁) · 1) = (𝑄𝑁))
64 eluz2b2 11501 . . . . . . . . 9 (𝐾 ∈ (ℤ‘2) ↔ (𝐾 ∈ ℕ ∧ 1 < 𝐾))
6564simprbi 478 . . . . . . . 8 (𝐾 ∈ (ℤ‘2) → 1 < 𝐾)
6665adantl 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → 1 < 𝐾)
67 1red 9810 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → 1 ∈ ℝ)
68 eluz2nn 11466 . . . . . . . . . 10 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
6968adantl 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → 𝐾 ∈ ℕ)
7069nnred 10790 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → 𝐾 ∈ ℝ)
7161nnred 10790 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → (𝑄𝑁) ∈ ℝ)
7261nngt0d 10819 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → 0 < (𝑄𝑁))
73 ltmul2 10623 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ ((𝑄𝑁) ∈ ℝ ∧ 0 < (𝑄𝑁))) → (1 < 𝐾 ↔ ((𝑄𝑁) · 1) < ((𝑄𝑁) · 𝐾)))
7467, 70, 71, 72, 73syl112anc 1321 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → (1 < 𝐾 ↔ ((𝑄𝑁) · 1) < ((𝑄𝑁) · 𝐾)))
7566, 74mpbid 220 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → ((𝑄𝑁) · 1) < ((𝑄𝑁) · 𝐾))
7663, 75eqbrtrrd 4505 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → (𝑄𝑁) < ((𝑄𝑁) · 𝐾))
77 nnmulcl 10798 . . . . . . . 8 (((𝑄𝑁) ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((𝑄𝑁) · 𝐾) ∈ ℕ)
7854, 68, 77syl2an 492 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → ((𝑄𝑁) · 𝐾) ∈ ℕ)
7978nnred 10790 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → ((𝑄𝑁) · 𝐾) ∈ ℝ)
8071, 79ltnled 9935 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → ((𝑄𝑁) < ((𝑄𝑁) · 𝐾) ↔ ¬ ((𝑄𝑁) · 𝐾) ≤ (𝑄𝑁)))
8176, 80mpbid 220 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → ¬ ((𝑄𝑁) · 𝐾) ≤ (𝑄𝑁))
8210a1i 11 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ⊆ ℤ)
8350ad2antrr 757 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ∃𝑥 ∈ ℤ ∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧𝑥)
8478adantr 479 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ((𝑄𝑁) · 𝐾) ∈ ℕ)
85 simpr 475 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2)))
8669adantr 479 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → 𝐾 ∈ ℕ)
8786nnsqcld 12759 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (𝐾↑2) ∈ ℕ)
88 nnz 11140 . . . . . . . . . . 11 ((𝐾↑2) ∈ ℕ → (𝐾↑2) ∈ ℤ)
8987, 88syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (𝐾↑2) ∈ ℤ)
9054nnsqcld 12759 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((𝑄𝑁)↑2) ∈ ℕ)
919, 90sseldi 3470 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑄𝑁)↑2) ∈ ℤ)
9290nnne0d 10820 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑄𝑁)↑2) ≠ 0)
93 dvdsval2 14693 . . . . . . . . . . . . 13 ((((𝑄𝑁)↑2) ∈ ℤ ∧ ((𝑄𝑁)↑2) ≠ 0 ∧ 𝑁 ∈ ℤ) → (((𝑄𝑁)↑2) ∥ 𝑁 ↔ (𝑁 / ((𝑄𝑁)↑2)) ∈ ℤ))
9491, 92, 14, 93syl3anc 1317 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((𝑄𝑁)↑2) ∥ 𝑁 ↔ (𝑁 / ((𝑄𝑁)↑2)) ∈ ℤ))
9560, 94mpbid 220 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 / ((𝑄𝑁)↑2)) ∈ ℤ)
9695ad2antrr 757 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (𝑁 / ((𝑄𝑁)↑2)) ∈ ℤ)
9791ad2antrr 757 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ((𝑄𝑁)↑2) ∈ ℤ)
98 dvdscmul 14715 . . . . . . . . . 10 (((𝐾↑2) ∈ ℤ ∧ (𝑁 / ((𝑄𝑁)↑2)) ∈ ℤ ∧ ((𝑄𝑁)↑2) ∈ ℤ) → ((𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2)) → (((𝑄𝑁)↑2) · (𝐾↑2)) ∥ (((𝑄𝑁)↑2) · (𝑁 / ((𝑄𝑁)↑2)))))
9989, 96, 97, 98syl3anc 1317 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ((𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2)) → (((𝑄𝑁)↑2) · (𝐾↑2)) ∥ (((𝑄𝑁)↑2) · (𝑁 / ((𝑄𝑁)↑2)))))
10085, 99mpd 15 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (((𝑄𝑁)↑2) · (𝐾↑2)) ∥ (((𝑄𝑁)↑2) · (𝑁 / ((𝑄𝑁)↑2))))
10162adantr 479 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (𝑄𝑁) ∈ ℂ)
10286nncnd 10791 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → 𝐾 ∈ ℂ)
103101, 102sqmuld 12750 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (((𝑄𝑁) · 𝐾)↑2) = (((𝑄𝑁)↑2) · (𝐾↑2)))
104103eqcomd 2520 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (((𝑄𝑁)↑2) · (𝐾↑2)) = (((𝑄𝑁) · 𝐾)↑2))
105 nncn 10783 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
106105ad2antrr 757 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → 𝑁 ∈ ℂ)
10790ad2antrr 757 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ((𝑄𝑁)↑2) ∈ ℕ)
108107nncnd 10791 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ((𝑄𝑁)↑2) ∈ ℂ)
10992ad2antrr 757 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ((𝑄𝑁)↑2) ≠ 0)
110106, 108, 109divcan2d 10552 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (((𝑄𝑁)↑2) · (𝑁 / ((𝑄𝑁)↑2))) = 𝑁)
111100, 104, 1103brtr3d 4512 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (((𝑄𝑁) · 𝐾)↑2) ∥ 𝑁)
112 oveq1 6433 . . . . . . . . 9 (𝑟 = ((𝑄𝑁) · 𝐾) → (𝑟↑2) = (((𝑄𝑁) · 𝐾)↑2))
113112breq1d 4491 . . . . . . . 8 (𝑟 = ((𝑄𝑁) · 𝐾) → ((𝑟↑2) ∥ 𝑁 ↔ (((𝑄𝑁) · 𝐾)↑2) ∥ 𝑁))
114113elrab 3235 . . . . . . 7 (((𝑄𝑁) · 𝐾) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ↔ (((𝑄𝑁) · 𝐾) ∈ ℕ ∧ (((𝑄𝑁) · 𝐾)↑2) ∥ 𝑁))
11584, 111, 114sylanbrc 694 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ((𝑄𝑁) · 𝐾) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁})
116 suprzub 11521 . . . . . 6 (({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧𝑥 ∧ ((𝑄𝑁) · 𝐾) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}) → ((𝑄𝑁) · 𝐾) ≤ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < ))
11782, 83, 115, 116syl3anc 1317 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ((𝑄𝑁) · 𝐾) ≤ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < ))
1188ad2antrr 757 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (𝑄𝑁) = sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < ))
119117, 118breqtrrd 4509 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ((𝑄𝑁) · 𝐾) ≤ (𝑄𝑁))
12081, 119mtand 688 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → ¬ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2)))
121120ex 448 . 2 (𝑁 ∈ ℕ → (𝐾 ∈ (ℤ‘2) → ¬ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))))
12254, 60, 1213jca 1234 1 (𝑁 ∈ ℕ → ((𝑄𝑁) ∈ ℕ ∧ ((𝑄𝑁)↑2) ∥ 𝑁 ∧ (𝐾 ∈ (ℤ‘2) → ¬ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1938  wne 2684  wral 2800  wrex 2801  {crab 2804  wss 3444  c0 3777   class class class wbr 4481  cmpt 4541  cfv 5689  (class class class)co 6426  supcsup 8105  cc 9689  cr 9690  0cc0 9691  1c1 9692   · cmul 9696   < clt 9829  cle 9830   / cdiv 10433  cn 10775  2c2 10825  cz 11118  cuz 11427  cexp 12590  cdvds 14690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6723  ax-cnex 9747  ax-resscn 9748  ax-1cn 9749  ax-icn 9750  ax-addcl 9751  ax-addrcl 9752  ax-mulcl 9753  ax-mulrcl 9754  ax-mulcom 9755  ax-addass 9756  ax-mulass 9757  ax-distr 9758  ax-i2m1 9759  ax-1ne0 9760  ax-1rid 9761  ax-rnegex 9762  ax-rrecex 9763  ax-cnre 9764  ax-pre-lttri 9765  ax-pre-lttrn 9766  ax-pre-ltadd 9767  ax-pre-mulgt0 9768
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-riota 6388  df-ov 6429  df-oprab 6430  df-mpt2 6431  df-om 6834  df-2nd 6935  df-wrecs 7169  df-recs 7231  df-rdg 7269  df-er 7505  df-en 7718  df-dom 7719  df-sdom 7720  df-sup 8107  df-inf 8108  df-pnf 9831  df-mnf 9832  df-xr 9833  df-ltxr 9834  df-le 9835  df-sub 10019  df-neg 10020  df-div 10434  df-nn 10776  df-2 10834  df-n0 11048  df-z 11119  df-uz 11428  df-seq 12532  df-exp 12591  df-dvds 14691
This theorem is referenced by:  prmreclem2  15343  prmreclem3  15344
  Copyright terms: Public domain W3C validator