MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmreclem5 Structured version   Visualization version   GIF version

Theorem prmreclem5 15567
Description: Lemma for prmrec 15569. Here we show the inequality 𝑁 / 2 < #𝑀 by decomposing the set (1...𝑁) into the disjoint union of the set 𝑀 of those numbers that are not divisible by any "large" primes (above 𝐾) and the indexed union over 𝐾 < 𝑘 of the numbers 𝑊𝑘 that divide the prime 𝑘. By prmreclem4 15566 the second of these has size less than 𝑁 times the prime reciprocal series, which is less than 1 / 2 by assumption, we find that the complementary part 𝑀 must be at least 𝑁 / 2 large. (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypotheses
Ref Expression
prmrec.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0))
prmrec.2 (𝜑𝐾 ∈ ℕ)
prmrec.3 (𝜑𝑁 ∈ ℕ)
prmrec.4 𝑀 = {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛}
prmrec.5 (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
prmrec.6 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2))
prmrec.7 𝑊 = (𝑝 ∈ ℕ ↦ {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)})
Assertion
Ref Expression
prmreclem5 (𝜑 → (𝑁 / 2) < ((2↑𝐾) · (√‘𝑁)))
Distinct variable groups:   𝑘,𝑛,𝑝,𝐹   𝑘,𝐾,𝑛,𝑝   𝑘,𝑀,𝑛,𝑝   𝜑,𝑘,𝑛,𝑝   𝑘,𝑊   𝑘,𝑁,𝑛,𝑝
Allowed substitution hints:   𝑊(𝑛,𝑝)

Proof of Theorem prmreclem5
Dummy variables 𝑟 𝑥 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmrec.3 . . . 4 (𝜑𝑁 ∈ ℕ)
21nnred 10995 . . 3 (𝜑𝑁 ∈ ℝ)
32rehalfcld 11239 . 2 (𝜑 → (𝑁 / 2) ∈ ℝ)
4 fzfi 12727 . . . . . 6 (1...𝑁) ∈ Fin
5 prmrec.4 . . . . . . 7 𝑀 = {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛}
6 ssrab2 3672 . . . . . . 7 {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛} ⊆ (1...𝑁)
75, 6eqsstri 3620 . . . . . 6 𝑀 ⊆ (1...𝑁)
8 ssfi 8140 . . . . . 6 (((1...𝑁) ∈ Fin ∧ 𝑀 ⊆ (1...𝑁)) → 𝑀 ∈ Fin)
94, 7, 8mp2an 707 . . . . 5 𝑀 ∈ Fin
10 hashcl 13103 . . . . 5 (𝑀 ∈ Fin → (#‘𝑀) ∈ ℕ0)
119, 10ax-mp 5 . . . 4 (#‘𝑀) ∈ ℕ0
1211nn0rei 11263 . . 3 (#‘𝑀) ∈ ℝ
1312a1i 11 . 2 (𝜑 → (#‘𝑀) ∈ ℝ)
14 2nn 11145 . . . . 5 2 ∈ ℕ
15 prmrec.2 . . . . . 6 (𝜑𝐾 ∈ ℕ)
1615nnnn0d 11311 . . . . 5 (𝜑𝐾 ∈ ℕ0)
17 nnexpcl 12829 . . . . 5 ((2 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (2↑𝐾) ∈ ℕ)
1814, 16, 17sylancr 694 . . . 4 (𝜑 → (2↑𝐾) ∈ ℕ)
1918nnred 10995 . . 3 (𝜑 → (2↑𝐾) ∈ ℝ)
201nnrpd 11830 . . . . 5 (𝜑𝑁 ∈ ℝ+)
2120rpsqrtcld 14100 . . . 4 (𝜑 → (√‘𝑁) ∈ ℝ+)
2221rpred 11832 . . 3 (𝜑 → (√‘𝑁) ∈ ℝ)
2319, 22remulcld 10030 . 2 (𝜑 → ((2↑𝐾) · (√‘𝑁)) ∈ ℝ)
242recnd 10028 . . . . . 6 (𝜑𝑁 ∈ ℂ)
25242halvesd 11238 . . . . 5 (𝜑 → ((𝑁 / 2) + (𝑁 / 2)) = 𝑁)
267a1i 11 . . . . . . . . 9 (𝜑𝑀 ⊆ (1...𝑁))
2715peano2nnd 10997 . . . . . . . . . . . . 13 (𝜑 → (𝐾 + 1) ∈ ℕ)
28 elfzuz 12296 . . . . . . . . . . . . 13 (𝑘 ∈ ((𝐾 + 1)...𝑁) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
29 eluznn 11718 . . . . . . . . . . . . 13 (((𝐾 + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝐾 + 1))) → 𝑘 ∈ ℕ)
3027, 28, 29syl2an 494 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ ℕ)
31 eleq1 2686 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑘 → (𝑝 ∈ ℙ ↔ 𝑘 ∈ ℙ))
32 breq1 4626 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑘 → (𝑝𝑛𝑘𝑛))
3331, 32anbi12d 746 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑘 → ((𝑝 ∈ ℙ ∧ 𝑝𝑛) ↔ (𝑘 ∈ ℙ ∧ 𝑘𝑛)))
3433rabbidv 3181 . . . . . . . . . . . . . . 15 (𝑝 = 𝑘 → {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)} = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)})
35 prmrec.7 . . . . . . . . . . . . . . 15 𝑊 = (𝑝 ∈ ℕ ↦ {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)})
36 ovex 6643 . . . . . . . . . . . . . . . 16 (1...𝑁) ∈ V
3736rabex 4783 . . . . . . . . . . . . . . 15 {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)} ∈ V
3834, 35, 37fvmpt 6249 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑊𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)})
3938adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝑊𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)})
40 ssrab2 3672 . . . . . . . . . . . . 13 {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)} ⊆ (1...𝑁)
4139, 40syl6eqss 3640 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝑊𝑘) ⊆ (1...𝑁))
4230, 41syldan 487 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑊𝑘) ⊆ (1...𝑁))
4342ralrimiva 2962 . . . . . . . . . 10 (𝜑 → ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ⊆ (1...𝑁))
44 iunss 4534 . . . . . . . . . 10 ( 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ⊆ (1...𝑁) ↔ ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ⊆ (1...𝑁))
4543, 44sylibr 224 . . . . . . . . 9 (𝜑 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ⊆ (1...𝑁))
4626, 45unssd 3773 . . . . . . . 8 (𝜑 → (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ⊆ (1...𝑁))
47 breq1 4626 . . . . . . . . . . . . . . . . . 18 (𝑝 = 𝑞 → (𝑝𝑛𝑞𝑛))
4847notbid 308 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑞 → (¬ 𝑝𝑛 ↔ ¬ 𝑞𝑛))
4948cbvralv 3163 . . . . . . . . . . . . . . . 16 (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛 ↔ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑛)
50 breq2 4627 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑥 → (𝑞𝑛𝑞𝑥))
5150notbid 308 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑥 → (¬ 𝑞𝑛 ↔ ¬ 𝑞𝑥))
5251ralbidv 2982 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑥 → (∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑛 ↔ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥))
5349, 52syl5bb 272 . . . . . . . . . . . . . . 15 (𝑛 = 𝑥 → (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛 ↔ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥))
5453, 5elrab2 3353 . . . . . . . . . . . . . 14 (𝑥𝑀 ↔ (𝑥 ∈ (1...𝑁) ∧ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥))
55 elun1 3764 . . . . . . . . . . . . . 14 (𝑥𝑀𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
5654, 55sylbir 225 . . . . . . . . . . . . 13 ((𝑥 ∈ (1...𝑁) ∧ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥) → 𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
5756ex 450 . . . . . . . . . . . 12 (𝑥 ∈ (1...𝑁) → (∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
5857adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑁)) → (∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
59 dfrex2 2992 . . . . . . . . . . . 12 (∃𝑞 ∈ (ℙ ∖ (1...𝐾))𝑞𝑥 ↔ ¬ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥)
60 eldifn 3717 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ (ℙ ∖ (1...𝐾)) → ¬ 𝑞 ∈ (1...𝐾))
6160ad2antrl 763 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → ¬ 𝑞 ∈ (1...𝐾))
62 eldifi 3716 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞 ∈ (ℙ ∖ (1...𝐾)) → 𝑞 ∈ ℙ)
6362ad2antrl 763 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞 ∈ ℙ)
64 prmnn 15331 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
6563, 64syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞 ∈ ℕ)
66 nnuz 11683 . . . . . . . . . . . . . . . . . . . . 21 ℕ = (ℤ‘1)
6765, 66syl6eleq 2708 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞 ∈ (ℤ‘1))
6815nnzd 11441 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐾 ∈ ℤ)
6968ad2antrr 761 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝐾 ∈ ℤ)
70 elfz5 12292 . . . . . . . . . . . . . . . . . . . 20 ((𝑞 ∈ (ℤ‘1) ∧ 𝐾 ∈ ℤ) → (𝑞 ∈ (1...𝐾) ↔ 𝑞𝐾))
7167, 69, 70syl2anc 692 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝑞 ∈ (1...𝐾) ↔ 𝑞𝐾))
7261, 71mtbid 314 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → ¬ 𝑞𝐾)
7315nnred 10995 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐾 ∈ ℝ)
7473ad2antrr 761 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝐾 ∈ ℝ)
7565nnred 10995 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞 ∈ ℝ)
7674, 75ltnled 10144 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝐾 < 𝑞 ↔ ¬ 𝑞𝐾))
7772, 76mpbird 247 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝐾 < 𝑞)
78 prmz 15332 . . . . . . . . . . . . . . . . . . 19 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
7963, 78syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞 ∈ ℤ)
80 zltp1le 11387 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝐾 < 𝑞 ↔ (𝐾 + 1) ≤ 𝑞))
8169, 79, 80syl2anc 692 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝐾 < 𝑞 ↔ (𝐾 + 1) ≤ 𝑞))
8277, 81mpbid 222 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝐾 + 1) ≤ 𝑞)
83 elfznn 12328 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ)
8483ad2antlr 762 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥 ∈ ℕ)
8584nnred 10995 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥 ∈ ℝ)
862ad2antrr 761 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑁 ∈ ℝ)
87 simprr 795 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞𝑥)
88 dvdsle 14975 . . . . . . . . . . . . . . . . . . 19 ((𝑞 ∈ ℤ ∧ 𝑥 ∈ ℕ) → (𝑞𝑥𝑞𝑥))
8979, 84, 88syl2anc 692 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝑞𝑥𝑞𝑥))
9087, 89mpd 15 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞𝑥)
91 elfzle2 12303 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (1...𝑁) → 𝑥𝑁)
9291ad2antlr 762 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥𝑁)
9375, 85, 86, 90, 92letrd 10154 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞𝑁)
9468peano2zd 11445 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐾 + 1) ∈ ℤ)
9594ad2antrr 761 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝐾 + 1) ∈ ℤ)
961nnzd 11441 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℤ)
9796ad2antrr 761 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑁 ∈ ℤ)
98 elfz 12290 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ ℤ ∧ (𝐾 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑞 ∈ ((𝐾 + 1)...𝑁) ↔ ((𝐾 + 1) ≤ 𝑞𝑞𝑁)))
9979, 95, 97, 98syl3anc 1323 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝑞 ∈ ((𝐾 + 1)...𝑁) ↔ ((𝐾 + 1) ≤ 𝑞𝑞𝑁)))
10082, 93, 99mpbir2and 956 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞 ∈ ((𝐾 + 1)...𝑁))
101 simplr 791 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥 ∈ (1...𝑁))
10263, 87jca 554 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝑞 ∈ ℙ ∧ 𝑞𝑥))
10350anbi2d 739 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑥 → ((𝑞 ∈ ℙ ∧ 𝑞𝑛) ↔ (𝑞 ∈ ℙ ∧ 𝑞𝑥)))
104103elrab 3351 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞𝑛)} ↔ (𝑥 ∈ (1...𝑁) ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑥)))
105101, 102, 104sylanbrc 697 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞𝑛)})
106 eleq1 2686 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = 𝑞 → (𝑝 ∈ ℙ ↔ 𝑞 ∈ ℙ))
107106, 47anbi12d 746 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 𝑞 → ((𝑝 ∈ ℙ ∧ 𝑝𝑛) ↔ (𝑞 ∈ ℙ ∧ 𝑞𝑛)))
108107rabbidv 3181 . . . . . . . . . . . . . . . . . 18 (𝑝 = 𝑞 → {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)} = {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞𝑛)})
10936rabex 4783 . . . . . . . . . . . . . . . . . 18 {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞𝑛)} ∈ V
110108, 35, 109fvmpt 6249 . . . . . . . . . . . . . . . . 17 (𝑞 ∈ ℕ → (𝑊𝑞) = {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞𝑛)})
11165, 110syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝑊𝑞) = {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞𝑛)})
112105, 111eleqtrrd 2701 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥 ∈ (𝑊𝑞))
113 fveq2 6158 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑞 → (𝑊𝑘) = (𝑊𝑞))
114113eliuni 4499 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑥 ∈ (𝑊𝑞)) → 𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))
115100, 112, 114syl2anc 692 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))
116 elun2 3765 . . . . . . . . . . . . . 14 (𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) → 𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
117115, 116syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
118117rexlimdvaa 3027 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...𝑁)) → (∃𝑞 ∈ (ℙ ∖ (1...𝐾))𝑞𝑥𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
11959, 118syl5bir 233 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑁)) → (¬ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
12058, 119pm2.61d 170 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑁)) → 𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
121120ex 450 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (1...𝑁) → 𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
122121ssrdv 3594 . . . . . . . 8 (𝜑 → (1...𝑁) ⊆ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
12346, 122eqssd 3605 . . . . . . 7 (𝜑 → (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) = (1...𝑁))
124123fveq2d 6162 . . . . . 6 (𝜑 → (#‘(𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))) = (#‘(1...𝑁)))
1251nnnn0d 11311 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
126 hashfz1 13090 . . . . . . 7 (𝑁 ∈ ℕ0 → (#‘(1...𝑁)) = 𝑁)
127125, 126syl 17 . . . . . 6 (𝜑 → (#‘(1...𝑁)) = 𝑁)
128124, 127eqtr2d 2656 . . . . 5 (𝜑𝑁 = (#‘(𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
1299a1i 11 . . . . . 6 (𝜑𝑀 ∈ Fin)
130 ssfi 8140 . . . . . . 7 (((1...𝑁) ∈ Fin ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ⊆ (1...𝑁)) → 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ∈ Fin)
1314, 45, 130sylancr 694 . . . . . 6 (𝜑 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ∈ Fin)
132 breq1 4626 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑘 → (𝑝𝑥𝑘𝑥))
133132notbid 308 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑘 → (¬ 𝑝𝑥 ↔ ¬ 𝑘𝑥))
134 breq2 4627 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑥 → (𝑝𝑛𝑝𝑥))
135134notbid 308 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑥 → (¬ 𝑝𝑛 ↔ ¬ 𝑝𝑥))
136135ralbidv 2982 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑥 → (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛 ↔ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑥))
137136, 5elrab2 3353 . . . . . . . . . . . . . . . . . 18 (𝑥𝑀 ↔ (𝑥 ∈ (1...𝑁) ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑥))
138137simprbi 480 . . . . . . . . . . . . . . . . 17 (𝑥𝑀 → ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑥)
139138ad2antlr 762 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑥)
140 simprr 795 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → 𝑘 ∈ ℙ)
141 noel 3901 . . . . . . . . . . . . . . . . . 18 ¬ 𝑘 ∈ ∅
142 simprl 793 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → 𝑘 ∈ ((𝐾 + 1)...𝑁))
143142biantrud 528 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → (𝑘 ∈ (1...𝐾) ↔ (𝑘 ∈ (1...𝐾) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁))))
144 elin 3780 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) ↔ (𝑘 ∈ (1...𝐾) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)))
145143, 144syl6bbr 278 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → (𝑘 ∈ (1...𝐾) ↔ 𝑘 ∈ ((1...𝐾) ∩ ((𝐾 + 1)...𝑁))))
14673ltp1d 10914 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐾 < (𝐾 + 1))
147 fzdisj 12326 . . . . . . . . . . . . . . . . . . . . . 22 (𝐾 < (𝐾 + 1) → ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅)
148146, 147syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅)
149148ad2antrr 761 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅)
150149eleq2d 2684 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → (𝑘 ∈ ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) ↔ 𝑘 ∈ ∅))
151145, 150bitrd 268 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → (𝑘 ∈ (1...𝐾) ↔ 𝑘 ∈ ∅))
152141, 151mtbiri 317 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → ¬ 𝑘 ∈ (1...𝐾))
153140, 152eldifd 3571 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → 𝑘 ∈ (ℙ ∖ (1...𝐾)))
154133, 139, 153rspcdva 3305 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → ¬ 𝑘𝑥)
155154expr 642 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑘 ∈ ℙ → ¬ 𝑘𝑥))
156 imnan 438 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℙ → ¬ 𝑘𝑥) ↔ ¬ (𝑘 ∈ ℙ ∧ 𝑘𝑥))
157155, 156sylib 208 . . . . . . . . . . . . 13 (((𝜑𝑥𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → ¬ (𝑘 ∈ ℙ ∧ 𝑘𝑥))
15830adantlr 750 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ ℕ)
159158, 38syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑊𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)})
160159eleq2d 2684 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑥 ∈ (𝑊𝑘) ↔ 𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)}))
161 breq2 4627 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑥 → (𝑘𝑛𝑘𝑥))
162161anbi2d 739 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑥 → ((𝑘 ∈ ℙ ∧ 𝑘𝑛) ↔ (𝑘 ∈ ℙ ∧ 𝑘𝑥)))
163162elrab 3351 . . . . . . . . . . . . . . 15 (𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)} ↔ (𝑥 ∈ (1...𝑁) ∧ (𝑘 ∈ ℙ ∧ 𝑘𝑥)))
164163simprbi 480 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)} → (𝑘 ∈ ℙ ∧ 𝑘𝑥))
165160, 164syl6bi 243 . . . . . . . . . . . . 13 (((𝜑𝑥𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑥 ∈ (𝑊𝑘) → (𝑘 ∈ ℙ ∧ 𝑘𝑥)))
166157, 165mtod 189 . . . . . . . . . . . 12 (((𝜑𝑥𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → ¬ 𝑥 ∈ (𝑊𝑘))
167166nrexdv 2997 . . . . . . . . . . 11 ((𝜑𝑥𝑀) → ¬ ∃𝑘 ∈ ((𝐾 + 1)...𝑁)𝑥 ∈ (𝑊𝑘))
168 eliun 4497 . . . . . . . . . . 11 (𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ↔ ∃𝑘 ∈ ((𝐾 + 1)...𝑁)𝑥 ∈ (𝑊𝑘))
169167, 168sylnibr 319 . . . . . . . . . 10 ((𝜑𝑥𝑀) → ¬ 𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))
170169ex 450 . . . . . . . . 9 (𝜑 → (𝑥𝑀 → ¬ 𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
171 imnan 438 . . . . . . . . 9 ((𝑥𝑀 → ¬ 𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ↔ ¬ (𝑥𝑀𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
172170, 171sylib 208 . . . . . . . 8 (𝜑 → ¬ (𝑥𝑀𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
173 elin 3780 . . . . . . . 8 (𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ↔ (𝑥𝑀𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
174172, 173sylnibr 319 . . . . . . 7 (𝜑 → ¬ 𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
175174eq0rdv 3957 . . . . . 6 (𝜑 → (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) = ∅)
176 hashun 13127 . . . . . 6 ((𝑀 ∈ Fin ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ∈ Fin ∧ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) = ∅) → (#‘(𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))) = ((#‘𝑀) + (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
177129, 131, 175, 176syl3anc 1323 . . . . 5 (𝜑 → (#‘(𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))) = ((#‘𝑀) + (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
17825, 128, 1773eqtrd 2659 . . . 4 (𝜑 → ((𝑁 / 2) + (𝑁 / 2)) = ((#‘𝑀) + (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
179 hashcl 13103 . . . . . . 7 ( 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ∈ Fin → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ∈ ℕ0)
180131, 179syl 17 . . . . . 6 (𝜑 → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ∈ ℕ0)
181180nn0red 11312 . . . . 5 (𝜑 → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ∈ ℝ)
182 fzfid 12728 . . . . . . . 8 (𝜑 → ((𝐾 + 1)...𝑁) ∈ Fin)
18327, 29sylan 488 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → 𝑘 ∈ ℕ)
184 nnrecre 11017 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
185 0re 10000 . . . . . . . . . . 11 0 ∈ ℝ
186 ifcl 4108 . . . . . . . . . . 11 (((1 / 𝑘) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
187184, 185, 186sylancl 693 . . . . . . . . . 10 (𝑘 ∈ ℕ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
188183, 187syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
18928, 188sylan2 491 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
190182, 189fsumrecl 14414 . . . . . . 7 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
1912, 190remulcld 10030 . . . . . 6 (𝜑 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ∈ ℝ)
192 prmrec.1 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0))
193 prmrec.5 . . . . . . . 8 (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
194 prmrec.6 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2))
195192, 15, 1, 5, 193, 194, 35prmreclem4 15566 . . . . . . 7 (𝜑 → (𝑁 ∈ (ℤ𝐾) → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
196 eluz 11661 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ (ℤ𝑁) ↔ 𝑁𝐾))
19796, 68, 196syl2anc 692 . . . . . . . . 9 (𝜑 → (𝐾 ∈ (ℤ𝑁) ↔ 𝑁𝐾))
198 nnleltp1 11392 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝑁𝐾𝑁 < (𝐾 + 1)))
1991, 15, 198syl2anc 692 . . . . . . . . 9 (𝜑 → (𝑁𝐾𝑁 < (𝐾 + 1)))
200 fzn 12315 . . . . . . . . . 10 (((𝐾 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < (𝐾 + 1) ↔ ((𝐾 + 1)...𝑁) = ∅))
20194, 96, 200syl2anc 692 . . . . . . . . 9 (𝜑 → (𝑁 < (𝐾 + 1) ↔ ((𝐾 + 1)...𝑁) = ∅))
202197, 199, 2013bitrd 294 . . . . . . . 8 (𝜑 → (𝐾 ∈ (ℤ𝑁) ↔ ((𝐾 + 1)...𝑁) = ∅))
203 0le0 11070 . . . . . . . . . 10 0 ≤ 0
20424mul01d 10195 . . . . . . . . . 10 (𝜑 → (𝑁 · 0) = 0)
205203, 204syl5breqr 4661 . . . . . . . . 9 (𝜑 → 0 ≤ (𝑁 · 0))
206 iuneq1 4507 . . . . . . . . . . . . 13 (((𝐾 + 1)...𝑁) = ∅ → 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) = 𝑘 ∈ ∅ (𝑊𝑘))
207 0iun 4550 . . . . . . . . . . . . 13 𝑘 ∈ ∅ (𝑊𝑘) = ∅
208206, 207syl6eq 2671 . . . . . . . . . . . 12 (((𝐾 + 1)...𝑁) = ∅ → 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) = ∅)
209208fveq2d 6162 . . . . . . . . . . 11 (((𝐾 + 1)...𝑁) = ∅ → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) = (#‘∅))
210 hash0 13114 . . . . . . . . . . 11 (#‘∅) = 0
211209, 210syl6eq 2671 . . . . . . . . . 10 (((𝐾 + 1)...𝑁) = ∅ → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) = 0)
212 sumeq1 14369 . . . . . . . . . . . 12 (((𝐾 + 1)...𝑁) = ∅ → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ∅ if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
213 sum0 14401 . . . . . . . . . . . 12 Σ𝑘 ∈ ∅ if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = 0
214212, 213syl6eq 2671 . . . . . . . . . . 11 (((𝐾 + 1)...𝑁) = ∅ → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = 0)
215214oveq2d 6631 . . . . . . . . . 10 (((𝐾 + 1)...𝑁) = ∅ → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · 0))
216211, 215breq12d 4636 . . . . . . . . 9 (((𝐾 + 1)...𝑁) = ∅ → ((#‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ 0 ≤ (𝑁 · 0)))
217205, 216syl5ibrcom 237 . . . . . . . 8 (𝜑 → (((𝐾 + 1)...𝑁) = ∅ → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
218202, 217sylbid 230 . . . . . . 7 (𝜑 → (𝐾 ∈ (ℤ𝑁) → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
219 uztric 11669 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝐾) ∨ 𝐾 ∈ (ℤ𝑁)))
22068, 96, 219syl2anc 692 . . . . . . 7 (𝜑 → (𝑁 ∈ (ℤ𝐾) ∨ 𝐾 ∈ (ℤ𝑁)))
221195, 218, 220mpjaod 396 . . . . . 6 (𝜑 → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
222 eqid 2621 . . . . . . . . . 10 (ℤ‘(𝐾 + 1)) = (ℤ‘(𝐾 + 1))
223 eleq1 2686 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ))
224 oveq2 6623 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
225223, 224ifbieq1d 4087 . . . . . . . . . . . 12 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, (1 / 𝑛), 0) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
226 ovex 6643 . . . . . . . . . . . . 13 (1 / 𝑘) ∈ V
227 c0ex 9994 . . . . . . . . . . . . 13 0 ∈ V
228226, 227ifex 4134 . . . . . . . . . . . 12 if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ V
229225, 192, 228fvmpt 6249 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝐹𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
230183, 229syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → (𝐹𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
231187recnd 10028 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
232229, 231eqeltrd 2698 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ ℂ)
233232adantl 482 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
23466, 27, 233iserex 14337 . . . . . . . . . . 11 (𝜑 → (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq(𝐾 + 1)( + , 𝐹) ∈ dom ⇝ ))
235193, 234mpbid 222 . . . . . . . . . 10 (𝜑 → seq(𝐾 + 1)( + , 𝐹) ∈ dom ⇝ )
236222, 94, 230, 188, 235isumrecl 14443 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
237 halfre 11206 . . . . . . . . . 10 (1 / 2) ∈ ℝ
238237a1i 11 . . . . . . . . 9 (𝜑 → (1 / 2) ∈ ℝ)
239 fzssuz 12340 . . . . . . . . . . 11 ((𝐾 + 1)...𝑁) ⊆ (ℤ‘(𝐾 + 1))
240239a1i 11 . . . . . . . . . 10 (𝜑 → ((𝐾 + 1)...𝑁) ⊆ (ℤ‘(𝐾 + 1)))
241 nnrp 11802 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
242241rpreccld 11842 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ+)
243242rpge0d 11836 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 0 ≤ (1 / 𝑘))
244 breq2 4627 . . . . . . . . . . . . 13 ((1 / 𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0) → (0 ≤ (1 / 𝑘) ↔ 0 ≤ if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
245 breq2 4627 . . . . . . . . . . . . 13 (0 = if(𝑘 ∈ ℙ, (1 / 𝑘), 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
246244, 245ifboth 4102 . . . . . . . . . . . 12 ((0 ≤ (1 / 𝑘) ∧ 0 ≤ 0) → 0 ≤ if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
247243, 203, 246sylancl 693 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 0 ≤ if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
248183, 247syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → 0 ≤ if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
249222, 94, 182, 240, 230, 188, 248, 235isumless 14521 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ≤ Σ𝑘 ∈ (ℤ‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
250190, 236, 238, 249, 194lelttrd 10155 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2))
2511nngt0d 11024 . . . . . . . . 9 (𝜑 → 0 < 𝑁)
252 ltmul2 10834 . . . . . . . . 9 ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ ∧ (1 / 2) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2) ↔ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) < (𝑁 · (1 / 2))))
253190, 238, 2, 251, 252syl112anc 1327 . . . . . . . 8 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2) ↔ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) < (𝑁 · (1 / 2))))
254250, 253mpbid 222 . . . . . . 7 (𝜑 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) < (𝑁 · (1 / 2)))
255 2cn 11051 . . . . . . . . 9 2 ∈ ℂ
256 2ne0 11073 . . . . . . . . 9 2 ≠ 0
257 divrec 10661 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (𝑁 / 2) = (𝑁 · (1 / 2)))
258255, 256, 257mp3an23 1413 . . . . . . . 8 (𝑁 ∈ ℂ → (𝑁 / 2) = (𝑁 · (1 / 2)))
25924, 258syl 17 . . . . . . 7 (𝜑 → (𝑁 / 2) = (𝑁 · (1 / 2)))
260254, 259breqtrrd 4651 . . . . . 6 (𝜑 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) < (𝑁 / 2))
261181, 191, 3, 221, 260lelttrd 10155 . . . . 5 (𝜑 → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) < (𝑁 / 2))
262181, 3, 13, 261ltadd2dd 10156 . . . 4 (𝜑 → ((#‘𝑀) + (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))) < ((#‘𝑀) + (𝑁 / 2)))
263178, 262eqbrtrd 4645 . . 3 (𝜑 → ((𝑁 / 2) + (𝑁 / 2)) < ((#‘𝑀) + (𝑁 / 2)))
2643, 13, 3ltadd1d 10580 . . 3 (𝜑 → ((𝑁 / 2) < (#‘𝑀) ↔ ((𝑁 / 2) + (𝑁 / 2)) < ((#‘𝑀) + (𝑁 / 2))))
265263, 264mpbird 247 . 2 (𝜑 → (𝑁 / 2) < (#‘𝑀))
266 oveq1 6622 . . . . . . . 8 (𝑘 = 𝑟 → (𝑘↑2) = (𝑟↑2))
267266breq1d 4633 . . . . . . 7 (𝑘 = 𝑟 → ((𝑘↑2) ∥ 𝑥 ↔ (𝑟↑2) ∥ 𝑥))
268267cbvrabv 3189 . . . . . 6 {𝑘 ∈ ℕ ∣ (𝑘↑2) ∥ 𝑥} = {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑥}
269 breq2 4627 . . . . . . 7 (𝑥 = 𝑛 → ((𝑟↑2) ∥ 𝑥 ↔ (𝑟↑2) ∥ 𝑛))
270269rabbidv 3181 . . . . . 6 (𝑥 = 𝑛 → {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑥} = {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛})
271268, 270syl5eq 2667 . . . . 5 (𝑥 = 𝑛 → {𝑘 ∈ ℕ ∣ (𝑘↑2) ∥ 𝑥} = {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛})
272271supeq1d 8312 . . . 4 (𝑥 = 𝑛 → sup({𝑘 ∈ ℕ ∣ (𝑘↑2) ∥ 𝑥}, ℝ, < ) = sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < ))
273272cbvmptv 4720 . . 3 (𝑥 ∈ ℕ ↦ sup({𝑘 ∈ ℕ ∣ (𝑘↑2) ∥ 𝑥}, ℝ, < )) = (𝑛 ∈ ℕ ↦ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < ))
274192, 15, 1, 5, 273prmreclem3 15565 . 2 (𝜑 → (#‘𝑀) ≤ ((2↑𝐾) · (√‘𝑁)))
2753, 13, 23, 265, 274ltletrd 10157 1 (𝜑 → (𝑁 / 2) < ((2↑𝐾) · (√‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2908  wrex 2909  {crab 2912  cdif 3557  cun 3558  cin 3559  wss 3560  c0 3897  ifcif 4064   ciun 4492   class class class wbr 4623  cmpt 4683  dom cdm 5084  cfv 5857  (class class class)co 6615  Fincfn 7915  supcsup 8306  cc 9894  cr 9895  0cc0 9896  1c1 9897   + caddc 9899   · cmul 9901   < clt 10034  cle 10035   / cdiv 10644  cn 10980  2c2 11030  0cn0 11252  cz 11337  cuz 11647  ...cfz 12284  seqcseq 12757  cexp 12816  #chash 13073  csqrt 13923  cli 14165  Σcsu 14366  cdvds 14926  cprime 15328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-map 7819  df-pm 7820  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-xnn0 11324  df-z 11338  df-uz 11648  df-q 11749  df-rp 11793  df-fz 12285  df-fzo 12423  df-fl 12549  df-mod 12625  df-seq 12758  df-exp 12817  df-hash 13074  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-clim 14169  df-rlim 14170  df-sum 14367  df-dvds 14927  df-gcd 15160  df-prm 15329  df-pc 15485
This theorem is referenced by:  prmreclem6  15568
  Copyright terms: Public domain W3C validator