MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmreclem6 Structured version   Visualization version   GIF version

Theorem prmreclem6 15672
Description: Lemma for prmrec 15673. If the series 𝐹 was convergent, there would be some 𝑘 such that the sum starting from 𝑘 + 1 sums to less than 1 / 2; this is a sufficient hypothesis for prmreclem5 15671 to produce the contradictory bound 𝑁 / 2 < (2↑𝑘)√𝑁, which is false for 𝑁 = 2↑(2𝑘 + 2). (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypothesis
Ref Expression
prmrec.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0))
Assertion
Ref Expression
prmreclem6 ¬ seq1( + , 𝐹) ∈ dom ⇝
Distinct variable group:   𝑛,𝐹

Proof of Theorem prmreclem6
Dummy variables 𝑗 𝑘 𝑚 𝑝 𝑟 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11761 . . . . . . . . 9 ℕ = (ℤ‘1)
2 1zzd 11446 . . . . . . . . 9 (⊤ → 1 ∈ ℤ)
3 nnrecre 11095 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
43adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
5 0re 10078 . . . . . . . . . . . 12 0 ∈ ℝ
6 ifcl 4163 . . . . . . . . . . . 12 (((1 / 𝑛) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑛 ∈ ℙ, (1 / 𝑛), 0) ∈ ℝ)
74, 5, 6sylancl 695 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → if(𝑛 ∈ ℙ, (1 / 𝑛), 0) ∈ ℝ)
8 prmrec.1 . . . . . . . . . . 11 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0))
97, 8fmptd 6425 . . . . . . . . . 10 (⊤ → 𝐹:ℕ⟶ℝ)
109ffvelrnda 6399 . . . . . . . . 9 ((⊤ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
111, 2, 10serfre 12870 . . . . . . . 8 (⊤ → seq1( + , 𝐹):ℕ⟶ℝ)
1211trud 1533 . . . . . . 7 seq1( + , 𝐹):ℕ⟶ℝ
13 frn 6091 . . . . . . 7 (seq1( + , 𝐹):ℕ⟶ℝ → ran seq1( + , 𝐹) ⊆ ℝ)
1412, 13mp1i 13 . . . . . 6 (seq1( + , 𝐹) ∈ dom ⇝ → ran seq1( + , 𝐹) ⊆ ℝ)
15 1nn 11069 . . . . . . . 8 1 ∈ ℕ
1612fdmi 6090 . . . . . . . 8 dom seq1( + , 𝐹) = ℕ
1715, 16eleqtrri 2729 . . . . . . 7 1 ∈ dom seq1( + , 𝐹)
18 ne0i 3954 . . . . . . . 8 (1 ∈ dom seq1( + , 𝐹) → dom seq1( + , 𝐹) ≠ ∅)
19 dm0rn0 5374 . . . . . . . . 9 (dom seq1( + , 𝐹) = ∅ ↔ ran seq1( + , 𝐹) = ∅)
2019necon3bii 2875 . . . . . . . 8 (dom seq1( + , 𝐹) ≠ ∅ ↔ ran seq1( + , 𝐹) ≠ ∅)
2118, 20sylib 208 . . . . . . 7 (1 ∈ dom seq1( + , 𝐹) → ran seq1( + , 𝐹) ≠ ∅)
2217, 21mp1i 13 . . . . . 6 (seq1( + , 𝐹) ∈ dom ⇝ → ran seq1( + , 𝐹) ≠ ∅)
23 1zzd 11446 . . . . . . . . 9 (seq1( + , 𝐹) ∈ dom ⇝ → 1 ∈ ℤ)
24 climdm 14329 . . . . . . . . . 10 (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
2524biimpi 206 . . . . . . . . 9 (seq1( + , 𝐹) ∈ dom ⇝ → seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
2612a1i 11 . . . . . . . . . 10 (seq1( + , 𝐹) ∈ dom ⇝ → seq1( + , 𝐹):ℕ⟶ℝ)
2726ffvelrnda 6399 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) ∈ ℝ)
281, 23, 25, 27climrecl 14358 . . . . . . . 8 (seq1( + , 𝐹) ∈ dom ⇝ → ( ⇝ ‘seq1( + , 𝐹)) ∈ ℝ)
29 simpr 476 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
3025adantr 480 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
31 eleq1 2718 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗 → (𝑛 ∈ ℙ ↔ 𝑗 ∈ ℙ))
32 oveq2 6698 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗 → (1 / 𝑛) = (1 / 𝑗))
3331, 32ifbieq1d 4142 . . . . . . . . . . . . . 14 (𝑛 = 𝑗 → if(𝑛 ∈ ℙ, (1 / 𝑛), 0) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
34 prmnn 15435 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℙ → 𝑗 ∈ ℕ)
3534adantl 481 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑗 ∈ ℙ) → 𝑗 ∈ ℕ)
3635nnrecred 11104 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑗 ∈ ℙ) → (1 / 𝑗) ∈ ℝ)
375a1i 11 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ ¬ 𝑗 ∈ ℙ) → 0 ∈ ℝ)
3836, 37ifclda 4153 . . . . . . . . . . . . . . . 16 (⊤ → if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
3938trud 1533 . . . . . . . . . . . . . . 15 if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ
4039elexi 3244 . . . . . . . . . . . . . 14 if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ V
4133, 8, 40fvmpt 6321 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝐹𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
4241adantl 481 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
4339a1i 11 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
4442, 43eqeltrd 2730 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
4544adantlr 751 . . . . . . . . . 10 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
46 nnrp 11880 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ+)
4746adantl 481 . . . . . . . . . . . . . . 15 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℝ+)
4847rpreccld 11920 . . . . . . . . . . . . . 14 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (1 / 𝑗) ∈ ℝ+)
4948rpge0d 11914 . . . . . . . . . . . . 13 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 0 ≤ (1 / 𝑗))
50 0le0 11148 . . . . . . . . . . . . 13 0 ≤ 0
51 breq2 4689 . . . . . . . . . . . . . 14 ((1 / 𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0) → (0 ≤ (1 / 𝑗) ↔ 0 ≤ if(𝑗 ∈ ℙ, (1 / 𝑗), 0)))
52 breq2 4689 . . . . . . . . . . . . . 14 (0 = if(𝑗 ∈ ℙ, (1 / 𝑗), 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑗 ∈ ℙ, (1 / 𝑗), 0)))
5351, 52ifboth 4157 . . . . . . . . . . . . 13 ((0 ≤ (1 / 𝑗) ∧ 0 ≤ 0) → 0 ≤ if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
5449, 50, 53sylancl 695 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 0 ≤ if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
5554, 42breqtrrd 4713 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 0 ≤ (𝐹𝑗))
5655adantlr 751 . . . . . . . . . 10 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → 0 ≤ (𝐹𝑗))
571, 29, 30, 45, 56climserle 14437 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹)))
5857ralrimiva 2995 . . . . . . . 8 (seq1( + , 𝐹) ∈ dom ⇝ → ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹)))
59 breq2 4689 . . . . . . . . . 10 (𝑥 = ( ⇝ ‘seq1( + , 𝐹)) → ((seq1( + , 𝐹)‘𝑘) ≤ 𝑥 ↔ (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹))))
6059ralbidv 3015 . . . . . . . . 9 (𝑥 = ( ⇝ ‘seq1( + , 𝐹)) → (∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥 ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹))))
6160rspcev 3340 . . . . . . . 8 ((( ⇝ ‘seq1( + , 𝐹)) ∈ ℝ ∧ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹))) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
6228, 58, 61syl2anc 694 . . . . . . 7 (seq1( + , 𝐹) ∈ dom ⇝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
63 ffn 6083 . . . . . . . . 9 (seq1( + , 𝐹):ℕ⟶ℝ → seq1( + , 𝐹) Fn ℕ)
64 breq1 4688 . . . . . . . . . 10 (𝑧 = (seq1( + , 𝐹)‘𝑘) → (𝑧𝑥 ↔ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
6564ralrn 6402 . . . . . . . . 9 (seq1( + , 𝐹) Fn ℕ → (∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
6612, 63, 65mp2b 10 . . . . . . . 8 (∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
6766rexbii 3070 . . . . . . 7 (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
6862, 67sylibr 224 . . . . . 6 (seq1( + , 𝐹) ∈ dom ⇝ → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥)
69 suprcl 11021 . . . . . 6 ((ran seq1( + , 𝐹) ⊆ ℝ ∧ ran seq1( + , 𝐹) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥) → sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ)
7014, 22, 68, 69syl3anc 1366 . . . . 5 (seq1( + , 𝐹) ∈ dom ⇝ → sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ)
71 2rp 11875 . . . . . 6 2 ∈ ℝ+
72 rpreccl 11895 . . . . . 6 (2 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
7371, 72ax-mp 5 . . . . 5 (1 / 2) ∈ ℝ+
74 ltsubrp 11904 . . . . 5 ((sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ ∧ (1 / 2) ∈ ℝ+) → (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < sup(ran seq1( + , 𝐹), ℝ, < ))
7570, 73, 74sylancl 695 . . . 4 (seq1( + , 𝐹) ∈ dom ⇝ → (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < sup(ran seq1( + , 𝐹), ℝ, < ))
76 halfre 11284 . . . . . 6 (1 / 2) ∈ ℝ
77 resubcl 10383 . . . . . 6 ((sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) ∈ ℝ)
7870, 76, 77sylancl 695 . . . . 5 (seq1( + , 𝐹) ∈ dom ⇝ → (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) ∈ ℝ)
79 suprlub 11025 . . . . 5 (((ran seq1( + , 𝐹) ⊆ ℝ ∧ ran seq1( + , 𝐹) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥) ∧ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) ∈ ℝ) → ((sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < sup(ran seq1( + , 𝐹), ℝ, < ) ↔ ∃𝑦 ∈ ran seq1( + , 𝐹)(sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦))
8014, 22, 68, 78, 79syl31anc 1369 . . . 4 (seq1( + , 𝐹) ∈ dom ⇝ → ((sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < sup(ran seq1( + , 𝐹), ℝ, < ) ↔ ∃𝑦 ∈ ran seq1( + , 𝐹)(sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦))
8175, 80mpbid 222 . . 3 (seq1( + , 𝐹) ∈ dom ⇝ → ∃𝑦 ∈ ran seq1( + , 𝐹)(sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦)
82 breq2 4689 . . . . 5 (𝑦 = (seq1( + , 𝐹)‘𝑘) → ((sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦 ↔ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘)))
8382rexrn 6401 . . . 4 (seq1( + , 𝐹) Fn ℕ → (∃𝑦 ∈ ran seq1( + , 𝐹)(sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦 ↔ ∃𝑘 ∈ ℕ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘)))
8412, 63, 83mp2b 10 . . 3 (∃𝑦 ∈ ran seq1( + , 𝐹)(sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦 ↔ ∃𝑘 ∈ ℕ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘))
8581, 84sylib 208 . 2 (seq1( + , 𝐹) ∈ dom ⇝ → ∃𝑘 ∈ ℕ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘))
86 2re 11128 . . . . . 6 2 ∈ ℝ
87 2nn 11223 . . . . . . . . 9 2 ∈ ℕ
88 nnmulcl 11081 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ)
8987, 29, 88sylancr 696 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ)
9089peano2nnd 11075 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℕ)
9190nnnn0d 11389 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℕ0)
92 reexpcl 12917 . . . . . 6 ((2 ∈ ℝ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → (2↑((2 · 𝑘) + 1)) ∈ ℝ)
9386, 91, 92sylancr 696 . . . . 5 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑((2 · 𝑘) + 1)) ∈ ℝ)
9493ltnrd 10209 . . . 4 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ¬ (2↑((2 · 𝑘) + 1)) < (2↑((2 · 𝑘) + 1)))
9529adantr 480 . . . . . . 7 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → 𝑘 ∈ ℕ)
96 peano2nn 11070 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
9796adantl 481 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
9897nnnn0d 11389 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ0)
99 nnexpcl 12913 . . . . . . . . . 10 ((2 ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ0) → (2↑(𝑘 + 1)) ∈ ℕ)
10087, 98, 99sylancr 696 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑(𝑘 + 1)) ∈ ℕ)
101100nnsqcld 13069 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2↑(𝑘 + 1))↑2) ∈ ℕ)
102101adantr 480 . . . . . . 7 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → ((2↑(𝑘 + 1))↑2) ∈ ℕ)
103 breq1 4688 . . . . . . . . . . 11 (𝑝 = 𝑤 → (𝑝𝑟𝑤𝑟))
104103notbid 307 . . . . . . . . . 10 (𝑝 = 𝑤 → (¬ 𝑝𝑟 ↔ ¬ 𝑤𝑟))
105104cbvralv 3201 . . . . . . . . 9 (∀𝑝 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑝𝑟 ↔ ∀𝑤 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑤𝑟)
106 breq2 4689 . . . . . . . . . . 11 (𝑟 = 𝑛 → (𝑤𝑟𝑤𝑛))
107106notbid 307 . . . . . . . . . 10 (𝑟 = 𝑛 → (¬ 𝑤𝑟 ↔ ¬ 𝑤𝑛))
108107ralbidv 3015 . . . . . . . . 9 (𝑟 = 𝑛 → (∀𝑤 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑤𝑟 ↔ ∀𝑤 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑤𝑛))
109105, 108syl5bb 272 . . . . . . . 8 (𝑟 = 𝑛 → (∀𝑝 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑝𝑟 ↔ ∀𝑤 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑤𝑛))
110109cbvrabv 3230 . . . . . . 7 {𝑟 ∈ (1...((2↑(𝑘 + 1))↑2)) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑝𝑟} = {𝑛 ∈ (1...((2↑(𝑘 + 1))↑2)) ∣ ∀𝑤 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑤𝑛}
111 simpll 805 . . . . . . 7 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → seq1( + , 𝐹) ∈ dom ⇝ )
112 eleq1 2718 . . . . . . . . . 10 (𝑚 = 𝑗 → (𝑚 ∈ ℙ ↔ 𝑗 ∈ ℙ))
113 oveq2 6698 . . . . . . . . . 10 (𝑚 = 𝑗 → (1 / 𝑚) = (1 / 𝑗))
114112, 113ifbieq1d 4142 . . . . . . . . 9 (𝑚 = 𝑗 → if(𝑚 ∈ ℙ, (1 / 𝑚), 0) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
115114cbvsumv 14470 . . . . . . . 8 Σ𝑚 ∈ (ℤ‘(𝑘 + 1))if(𝑚 ∈ ℙ, (1 / 𝑚), 0) = Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)
116 simpr 476 . . . . . . . 8 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2))
117115, 116syl5eqbr 4720 . . . . . . 7 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → Σ𝑚 ∈ (ℤ‘(𝑘 + 1))if(𝑚 ∈ ℙ, (1 / 𝑚), 0) < (1 / 2))
118 eqid 2651 . . . . . . 7 (𝑤 ∈ ℕ ↦ {𝑛 ∈ (1...((2↑(𝑘 + 1))↑2)) ∣ (𝑤 ∈ ℙ ∧ 𝑤𝑛)}) = (𝑤 ∈ ℕ ↦ {𝑛 ∈ (1...((2↑(𝑘 + 1))↑2)) ∣ (𝑤 ∈ ℙ ∧ 𝑤𝑛)})
1198, 95, 102, 110, 111, 117, 118prmreclem5 15671 . . . . . 6 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → (((2↑(𝑘 + 1))↑2) / 2) < ((2↑𝑘) · (√‘((2↑(𝑘 + 1))↑2))))
120119ex 449 . . . . 5 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2) → (((2↑(𝑘 + 1))↑2) / 2) < ((2↑𝑘) · (√‘((2↑(𝑘 + 1))↑2)))))
121 eqid 2651 . . . . . . . . 9 (ℤ‘(𝑘 + 1)) = (ℤ‘(𝑘 + 1))
12297nnzd 11519 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℤ)
123 eluznn 11796 . . . . . . . . . . 11 (((𝑘 + 1) ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(𝑘 + 1))) → 𝑗 ∈ ℕ)
12497, 123sylan 487 . . . . . . . . . 10 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘(𝑘 + 1))) → 𝑗 ∈ ℕ)
125124, 41syl 17 . . . . . . . . 9 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘(𝑘 + 1))) → (𝐹𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
12639a1i 11 . . . . . . . . 9 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘(𝑘 + 1))) → if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
127 simpl 472 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → seq1( + , 𝐹) ∈ dom ⇝ )
12841adantl 481 . . . . . . . . . . . 12 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
12939recni 10090 . . . . . . . . . . . . 13 if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℂ
130129a1i 11 . . . . . . . . . . . 12 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℂ)
131128, 130eqeltrd 2730 . . . . . . . . . . 11 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℂ)
1321, 97, 131iserex 14431 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq(𝑘 + 1)( + , 𝐹) ∈ dom ⇝ ))
133127, 132mpbid 222 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → seq(𝑘 + 1)( + , 𝐹) ∈ dom ⇝ )
134121, 122, 125, 126, 133isumrecl 14540 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
13576a1i 11 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (1 / 2) ∈ ℝ)
136 elfznn 12408 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑘) → 𝑗 ∈ ℕ)
137136adantl 481 . . . . . . . . . . 11 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → 𝑗 ∈ ℕ)
138137, 41syl 17 . . . . . . . . . 10 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝐹𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
13929, 1syl6eleq 2740 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
140129a1i 11 . . . . . . . . . 10 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℂ)
141138, 139, 140fsumser 14505 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = (seq1( + , 𝐹)‘𝑘))
142141, 27eqeltrd 2730 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
143134, 135, 142ltadd2d 10231 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2) ↔ (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)) < (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + (1 / 2))))
1441, 121, 97, 128, 130, 127isumsplit 14616 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = (Σ𝑗 ∈ (1...((𝑘 + 1) − 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)))
145 nncn 11066 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
146145adantl 481 . . . . . . . . . . . . 13 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
147 ax-1cn 10032 . . . . . . . . . . . . 13 1 ∈ ℂ
148 pncan 10325 . . . . . . . . . . . . 13 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
149146, 147, 148sylancl 695 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) − 1) = 𝑘)
150149oveq2d 6706 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (1...((𝑘 + 1) − 1)) = (1...𝑘))
151150sumeq1d 14475 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...((𝑘 + 1) − 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
152151oveq1d 6705 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ (1...((𝑘 + 1) − 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)) = (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)))
153144, 152eqtrd 2685 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)))
154153breq1d 4695 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + (1 / 2)) ↔ (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)) < (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + (1 / 2))))
155143, 154bitr4d 271 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2) ↔ Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + (1 / 2))))
156 eqid 2651 . . . . . . . . . 10 seq1( + , 𝐹) = seq1( + , 𝐹)
1571, 156, 23, 42, 43, 54, 62isumsup 14623 . . . . . . . . 9 (seq1( + , 𝐹) ∈ dom ⇝ → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = sup(ran seq1( + , 𝐹), ℝ, < ))
158157, 70eqeltrd 2730 . . . . . . . 8 (seq1( + , 𝐹) ∈ dom ⇝ → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
159158adantr 480 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
160159, 135, 142ltsubaddd 10661 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) − (1 / 2)) < Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ↔ Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + (1 / 2))))
161157adantr 480 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = sup(ran seq1( + , 𝐹), ℝ, < ))
162161oveq1d 6705 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) − (1 / 2)) = (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)))
163162, 141breq12d 4698 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) − (1 / 2)) < Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ↔ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘)))
164155, 160, 1633bitr2d 296 . . . . 5 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2) ↔ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘)))
165 2cn 11129 . . . . . . . . . . . . 13 2 ∈ ℂ
166165a1i 11 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 2 ∈ ℂ)
167147a1i 11 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
168166, 146, 167adddid 10102 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2 · (𝑘 + 1)) = ((2 · 𝑘) + (2 · 1)))
16997nncnd 11074 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℂ)
170 mulcom 10060 . . . . . . . . . . . 12 (((𝑘 + 1) ∈ ℂ ∧ 2 ∈ ℂ) → ((𝑘 + 1) · 2) = (2 · (𝑘 + 1)))
171169, 165, 170sylancl 695 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) · 2) = (2 · (𝑘 + 1)))
17289nncnd 11074 . . . . . . . . . . . . 13 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℂ)
173172, 167, 167addassd 10100 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) + 1) + 1) = ((2 · 𝑘) + (1 + 1)))
1741472timesi 11185 . . . . . . . . . . . . 13 (2 · 1) = (1 + 1)
175174oveq2i 6701 . . . . . . . . . . . 12 ((2 · 𝑘) + (2 · 1)) = ((2 · 𝑘) + (1 + 1))
176173, 175syl6eqr 2703 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) + 1) + 1) = ((2 · 𝑘) + (2 · 1)))
177168, 171, 1763eqtr4d 2695 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) · 2) = (((2 · 𝑘) + 1) + 1))
178177oveq2d 6706 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑((𝑘 + 1) · 2)) = (2↑(((2 · 𝑘) + 1) + 1)))
179 2nn0 11347 . . . . . . . . . . 11 2 ∈ ℕ0
180179a1i 11 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 2 ∈ ℕ0)
181166, 180, 98expmuld 13051 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑((𝑘 + 1) · 2)) = ((2↑(𝑘 + 1))↑2))
182 expp1 12907 . . . . . . . . . 10 ((2 ∈ ℂ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → (2↑(((2 · 𝑘) + 1) + 1)) = ((2↑((2 · 𝑘) + 1)) · 2))
183165, 91, 182sylancr 696 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑(((2 · 𝑘) + 1) + 1)) = ((2↑((2 · 𝑘) + 1)) · 2))
184178, 181, 1833eqtr3d 2693 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2↑(𝑘 + 1))↑2) = ((2↑((2 · 𝑘) + 1)) · 2))
185184oveq1d 6705 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (((2↑(𝑘 + 1))↑2) / 2) = (((2↑((2 · 𝑘) + 1)) · 2) / 2))
186 expcl 12918 . . . . . . . . 9 ((2 ∈ ℂ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → (2↑((2 · 𝑘) + 1)) ∈ ℂ)
187165, 91, 186sylancr 696 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑((2 · 𝑘) + 1)) ∈ ℂ)
188 2ne0 11151 . . . . . . . . 9 2 ≠ 0
189 divcan4 10750 . . . . . . . . 9 (((2↑((2 · 𝑘) + 1)) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (((2↑((2 · 𝑘) + 1)) · 2) / 2) = (2↑((2 · 𝑘) + 1)))
190165, 188, 189mp3an23 1456 . . . . . . . 8 ((2↑((2 · 𝑘) + 1)) ∈ ℂ → (((2↑((2 · 𝑘) + 1)) · 2) / 2) = (2↑((2 · 𝑘) + 1)))
191187, 190syl 17 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (((2↑((2 · 𝑘) + 1)) · 2) / 2) = (2↑((2 · 𝑘) + 1)))
192185, 191eqtrd 2685 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (((2↑(𝑘 + 1))↑2) / 2) = (2↑((2 · 𝑘) + 1)))
193 nnnn0 11337 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
194193adantl 481 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
195166, 98, 194expaddd 13050 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑(𝑘 + (𝑘 + 1))) = ((2↑𝑘) · (2↑(𝑘 + 1))))
1961462timesd 11313 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) = (𝑘 + 𝑘))
197196oveq1d 6705 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) = ((𝑘 + 𝑘) + 1))
198146, 146, 167addassd 10100 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 𝑘) + 1) = (𝑘 + (𝑘 + 1)))
199197, 198eqtrd 2685 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) = (𝑘 + (𝑘 + 1)))
200199oveq2d 6706 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑((2 · 𝑘) + 1)) = (2↑(𝑘 + (𝑘 + 1))))
201100nnrpd 11908 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑(𝑘 + 1)) ∈ ℝ+)
202201rprege0d 11917 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2↑(𝑘 + 1)) ∈ ℝ ∧ 0 ≤ (2↑(𝑘 + 1))))
203 sqrtsq 14054 . . . . . . . . 9 (((2↑(𝑘 + 1)) ∈ ℝ ∧ 0 ≤ (2↑(𝑘 + 1))) → (√‘((2↑(𝑘 + 1))↑2)) = (2↑(𝑘 + 1)))
204202, 203syl 17 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (√‘((2↑(𝑘 + 1))↑2)) = (2↑(𝑘 + 1)))
205204oveq2d 6706 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2↑𝑘) · (√‘((2↑(𝑘 + 1))↑2))) = ((2↑𝑘) · (2↑(𝑘 + 1))))
206195, 200, 2053eqtr4rd 2696 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2↑𝑘) · (√‘((2↑(𝑘 + 1))↑2))) = (2↑((2 · 𝑘) + 1)))
207192, 206breq12d 4698 . . . . 5 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((((2↑(𝑘 + 1))↑2) / 2) < ((2↑𝑘) · (√‘((2↑(𝑘 + 1))↑2))) ↔ (2↑((2 · 𝑘) + 1)) < (2↑((2 · 𝑘) + 1))))
208120, 164, 2073imtr3d 282 . . . 4 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘) → (2↑((2 · 𝑘) + 1)) < (2↑((2 · 𝑘) + 1))))
20994, 208mtod 189 . . 3 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ¬ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘))
210209nrexdv 3030 . 2 (seq1( + , 𝐹) ∈ dom ⇝ → ¬ ∃𝑘 ∈ ℕ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘))
21185, 210pm2.65i 185 1 ¬ seq1( + , 𝐹) ∈ dom ⇝
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 383   = wceq 1523  wtru 1524  wcel 2030  wne 2823  wral 2941  wrex 2942  {crab 2945  cdif 3604  wss 3607  c0 3948  ifcif 4119   class class class wbr 4685  cmpt 4762  dom cdm 5143  ran crn 5144   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  supcsup 8387  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  cn 11058  2c2 11108  0cn0 11330  cuz 11725  +crp 11870  ...cfz 12364  seqcseq 12841  cexp 12900  csqrt 14017  cli 14259  Σcsu 14460  cdvds 15027  cprime 15432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-dvds 15028  df-gcd 15264  df-prm 15433  df-pc 15589
This theorem is referenced by:  prmrec  15673
  Copyright terms: Public domain W3C validator