MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmunb Structured version   Visualization version   GIF version

Theorem prmunb 15840
Description: The primes are unbounded. (Contributed by Paul Chapman, 28-Nov-2012.)
Assertion
Ref Expression
prmunb (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ 𝑁 < 𝑝)
Distinct variable group:   𝑁,𝑝

Proof of Theorem prmunb
StepHypRef Expression
1 nnnn0 11511 . 2 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 faccl 13284 . . . 4 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
3 elnnuz 11937 . . . . 5 ((!‘𝑁) ∈ ℕ ↔ (!‘𝑁) ∈ (ℤ‘1))
4 eluzp1p1 11925 . . . . . 6 ((!‘𝑁) ∈ (ℤ‘1) → ((!‘𝑁) + 1) ∈ (ℤ‘(1 + 1)))
5 df-2 11291 . . . . . . 7 2 = (1 + 1)
65fveq2i 6356 . . . . . 6 (ℤ‘2) = (ℤ‘(1 + 1))
74, 6syl6eleqr 2850 . . . . 5 ((!‘𝑁) ∈ (ℤ‘1) → ((!‘𝑁) + 1) ∈ (ℤ‘2))
83, 7sylbi 207 . . . 4 ((!‘𝑁) ∈ ℕ → ((!‘𝑁) + 1) ∈ (ℤ‘2))
9 exprmfct 15638 . . . 4 (((!‘𝑁) + 1) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ ((!‘𝑁) + 1))
102, 8, 93syl 18 . . 3 (𝑁 ∈ ℕ0 → ∃𝑝 ∈ ℙ 𝑝 ∥ ((!‘𝑁) + 1))
11 prmz 15611 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
12 nn0z 11612 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
13 eluz 11913 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑝) ↔ 𝑝𝑁))
1411, 12, 13syl2an 495 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑁 ∈ (ℤ𝑝) ↔ 𝑝𝑁))
15 prmuz2 15630 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
16 eluz2b2 11974 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ (ℤ‘2) ↔ (𝑝 ∈ ℕ ∧ 1 < 𝑝))
1715, 16sylib 208 . . . . . . . . . . . . . . . 16 (𝑝 ∈ ℙ → (𝑝 ∈ ℕ ∧ 1 < 𝑝))
1817adantr 472 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → (𝑝 ∈ ℕ ∧ 1 < 𝑝))
1918simpld 477 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → 𝑝 ∈ ℕ)
2019nnnn0d 11563 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → 𝑝 ∈ ℕ0)
21 eluznn0 11970 . . . . . . . . . . . . 13 ((𝑝 ∈ ℕ0𝑁 ∈ (ℤ𝑝)) → 𝑁 ∈ ℕ0)
2220, 21sylancom 704 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → 𝑁 ∈ ℕ0)
23 nnz 11611 . . . . . . . . . . . 12 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℤ)
2422, 2, 233syl 18 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → (!‘𝑁) ∈ ℤ)
2518simprd 482 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → 1 < 𝑝)
26 dvdsfac 15270 . . . . . . . . . . . 12 ((𝑝 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑝)) → 𝑝 ∥ (!‘𝑁))
2719, 26sylancom 704 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → 𝑝 ∥ (!‘𝑁))
28 ndvdsp1 15357 . . . . . . . . . . . 12 (((!‘𝑁) ∈ ℤ ∧ 𝑝 ∈ ℕ ∧ 1 < 𝑝) → (𝑝 ∥ (!‘𝑁) → ¬ 𝑝 ∥ ((!‘𝑁) + 1)))
2928imp 444 . . . . . . . . . . 11 ((((!‘𝑁) ∈ ℤ ∧ 𝑝 ∈ ℕ ∧ 1 < 𝑝) ∧ 𝑝 ∥ (!‘𝑁)) → ¬ 𝑝 ∥ ((!‘𝑁) + 1))
3024, 19, 25, 27, 29syl31anc 1480 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → ¬ 𝑝 ∥ ((!‘𝑁) + 1))
3130ex 449 . . . . . . . . 9 (𝑝 ∈ ℙ → (𝑁 ∈ (ℤ𝑝) → ¬ 𝑝 ∥ ((!‘𝑁) + 1)))
3231adantr 472 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑁 ∈ (ℤ𝑝) → ¬ 𝑝 ∥ ((!‘𝑁) + 1)))
3314, 32sylbird 250 . . . . . . 7 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑝𝑁 → ¬ 𝑝 ∥ ((!‘𝑁) + 1)))
3433con2d 129 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑝 ∥ ((!‘𝑁) + 1) → ¬ 𝑝𝑁))
3534ancoms 468 . . . . 5 ((𝑁 ∈ ℕ0𝑝 ∈ ℙ) → (𝑝 ∥ ((!‘𝑁) + 1) → ¬ 𝑝𝑁))
36 nn0re 11513 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3711zred 11694 . . . . . 6 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
38 ltnle 10329 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (𝑁 < 𝑝 ↔ ¬ 𝑝𝑁))
3936, 37, 38syl2an 495 . . . . 5 ((𝑁 ∈ ℕ0𝑝 ∈ ℙ) → (𝑁 < 𝑝 ↔ ¬ 𝑝𝑁))
4035, 39sylibrd 249 . . . 4 ((𝑁 ∈ ℕ0𝑝 ∈ ℙ) → (𝑝 ∥ ((!‘𝑁) + 1) → 𝑁 < 𝑝))
4140reximdva 3155 . . 3 (𝑁 ∈ ℕ0 → (∃𝑝 ∈ ℙ 𝑝 ∥ ((!‘𝑁) + 1) → ∃𝑝 ∈ ℙ 𝑁 < 𝑝))
4210, 41mpd 15 . 2 (𝑁 ∈ ℕ0 → ∃𝑝 ∈ ℙ 𝑁 < 𝑝)
431, 42syl 17 1 (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ 𝑁 < 𝑝)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072  wcel 2139  wrex 3051   class class class wbr 4804  cfv 6049  (class class class)co 6814  cr 10147  1c1 10149   + caddc 10151   < clt 10286  cle 10287  cn 11232  2c2 11282  0cn0 11504  cz 11589  cuz 11899  !cfa 13274  cdvds 15202  cprime 15607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-fz 12540  df-seq 13016  df-exp 13075  df-fac 13275  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-dvds 15203  df-prm 15608
This theorem is referenced by:  prminf  15841  prmgaplem6  15982  nn0prpw  32645  prmunb2  39030  etransclem48  41020
  Copyright terms: Public domain W3C validator