Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmunb2 Structured version   Visualization version   GIF version

Theorem prmunb2 37315
Description: The primes are unbounded. This generalizes prmunb 15404 to real 𝐴 with arch 11138 and lttrd 10049: every real is less than some positive integer, itself less than some prime. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
prmunb2 (𝐴 ∈ ℝ → ∃𝑝 ∈ ℙ 𝐴 < 𝑝)
Distinct variable group:   𝐴,𝑝

Proof of Theorem prmunb2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simplll 793 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛𝑛 < 𝑝)) → 𝐴 ∈ ℝ)
2 nnre 10876 . . . . 5 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
32ad3antlr 762 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛𝑛 < 𝑝)) → 𝑛 ∈ ℝ)
4 prmz 15175 . . . . . 6 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
54zred 11316 . . . . 5 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
65ad2antlr 758 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛𝑛 < 𝑝)) → 𝑝 ∈ ℝ)
7 simprl 789 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛𝑛 < 𝑝)) → 𝐴 < 𝑛)
8 simprr 791 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛𝑛 < 𝑝)) → 𝑛 < 𝑝)
91, 3, 6, 7, 8lttrd 10049 . . 3 ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛𝑛 < 𝑝)) → 𝐴 < 𝑝)
10 arch 11138 . . . . 5 (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛)
11 prmunb 15404 . . . . . 6 (𝑛 ∈ ℕ → ∃𝑝 ∈ ℙ 𝑛 < 𝑝)
1211rgen 2905 . . . . 5 𝑛 ∈ ℕ ∃𝑝 ∈ ℙ 𝑛 < 𝑝
13 r19.29r 3054 . . . . 5 ((∃𝑛 ∈ ℕ 𝐴 < 𝑛 ∧ ∀𝑛 ∈ ℕ ∃𝑝 ∈ ℙ 𝑛 < 𝑝) → ∃𝑛 ∈ ℕ (𝐴 < 𝑛 ∧ ∃𝑝 ∈ ℙ 𝑛 < 𝑝))
1410, 12, 13sylancl 692 . . . 4 (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ (𝐴 < 𝑛 ∧ ∃𝑝 ∈ ℙ 𝑛 < 𝑝))
15 r19.42v 3072 . . . . 5 (∃𝑝 ∈ ℙ (𝐴 < 𝑛𝑛 < 𝑝) ↔ (𝐴 < 𝑛 ∧ ∃𝑝 ∈ ℙ 𝑛 < 𝑝))
1615rexbii 3022 . . . 4 (∃𝑛 ∈ ℕ ∃𝑝 ∈ ℙ (𝐴 < 𝑛𝑛 < 𝑝) ↔ ∃𝑛 ∈ ℕ (𝐴 < 𝑛 ∧ ∃𝑝 ∈ ℙ 𝑛 < 𝑝))
1714, 16sylibr 222 . . 3 (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ ∃𝑝 ∈ ℙ (𝐴 < 𝑛𝑛 < 𝑝))
189, 17reximddv2 3001 . 2 (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ ∃𝑝 ∈ ℙ 𝐴 < 𝑝)
19 1nn 10880 . . 3 1 ∈ ℕ
20 ne0i 3879 . . 3 (1 ∈ ℕ → ℕ ≠ ∅)
21 r19.9rzv 4016 . . 3 (ℕ ≠ ∅ → (∃𝑝 ∈ ℙ 𝐴 < 𝑝 ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ ℙ 𝐴 < 𝑝))
2219, 20, 21mp2b 10 . 2 (∃𝑝 ∈ ℙ 𝐴 < 𝑝 ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ ℙ 𝐴 < 𝑝)
2318, 22sylibr 222 1 (𝐴 ∈ ℝ → ∃𝑝 ∈ ℙ 𝐴 < 𝑝)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  wcel 1976  wne 2779  wral 2895  wrex 2896  c0 3873   class class class wbr 4577  cr 9791  1c1 9793   < clt 9930  cn 10869  cprime 15171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-inf 8209  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10536  df-nn 10870  df-2 10928  df-3 10929  df-n0 11142  df-z 11213  df-uz 11522  df-rp 11667  df-fz 12155  df-seq 12621  df-exp 12680  df-fac 12880  df-cj 13635  df-re 13636  df-im 13637  df-sqrt 13771  df-abs 13772  df-dvds 14770  df-prm 15172
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator