![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prnz | Structured version Visualization version GIF version |
Description: A pair containing a set is not empty. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
prnz.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
prnz | ⊢ {𝐴, 𝐵} ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prnz.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | prid1 4404 | . 2 ⊢ 𝐴 ∈ {𝐴, 𝐵} |
3 | 2 | ne0ii 4031 | 1 ⊢ {𝐴, 𝐵} ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2103 ≠ wne 2896 Vcvv 3304 ∅c0 4023 {cpr 4287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-v 3306 df-dif 3683 df-un 3685 df-nul 4024 df-sn 4286 df-pr 4288 |
This theorem is referenced by: prnzgOLD 4418 opnz 5046 propssopi 5075 fiint 8353 wilthlem2 24915 upgrbi 26108 wlkvtxiedg 26651 shincli 28451 chincli 28549 spr0nelg 42153 sprvalpwn0 42160 |
Copyright terms: Public domain | W3C validator |