Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  probfinmeasb Structured version   Visualization version   GIF version

Theorem probfinmeasb 31681
Description: Build a probability measure from a finite measure. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Assertion
Ref Expression
probfinmeasb ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → (𝑀f/c /𝑒 (𝑀 𝑆)) ∈ Prob)

Proof of Theorem probfinmeasb
StepHypRef Expression
1 measdivcst 31478 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → (𝑀f/c /𝑒 (𝑀 𝑆)) ∈ (measures‘𝑆))
2 measfn 31458 . . . . . . . 8 (𝑀 ∈ (measures‘𝑆) → 𝑀 Fn 𝑆)
32adantr 483 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → 𝑀 Fn 𝑆)
4 measbase 31451 . . . . . . . 8 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
54adantr 483 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → 𝑆 ran sigAlgebra)
6 simpr 487 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → (𝑀 𝑆) ∈ ℝ+)
73, 5, 6ofcfn 31354 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → (𝑀f/c /𝑒 (𝑀 𝑆)) Fn 𝑆)
8 fndm 6450 . . . . . 6 ((𝑀f/c /𝑒 (𝑀 𝑆)) Fn 𝑆 → dom (𝑀f/c /𝑒 (𝑀 𝑆)) = 𝑆)
97, 8syl 17 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → dom (𝑀f/c /𝑒 (𝑀 𝑆)) = 𝑆)
109fveq2d 6669 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → (measures‘dom (𝑀f/c /𝑒 (𝑀 𝑆))) = (measures‘𝑆))
111, 10eleqtrrd 2916 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → (𝑀f/c /𝑒 (𝑀 𝑆)) ∈ (measures‘dom (𝑀f/c /𝑒 (𝑀 𝑆))))
12 measbasedom 31456 . . 3 ((𝑀f/c /𝑒 (𝑀 𝑆)) ∈ ran measures ↔ (𝑀f/c /𝑒 (𝑀 𝑆)) ∈ (measures‘dom (𝑀f/c /𝑒 (𝑀 𝑆))))
1311, 12sylibr 236 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → (𝑀f/c /𝑒 (𝑀 𝑆)) ∈ ran measures)
149unieqd 4842 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → dom (𝑀f/c /𝑒 (𝑀 𝑆)) = 𝑆)
1514fveq2d 6669 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → ((𝑀f/c /𝑒 (𝑀 𝑆))‘ dom (𝑀f/c /𝑒 (𝑀 𝑆))) = ((𝑀f/c /𝑒 (𝑀 𝑆))‘ 𝑆))
16 unielsiga 31382 . . . . 5 (𝑆 ran sigAlgebra → 𝑆𝑆)
175, 16syl 17 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → 𝑆𝑆)
18 eqidd 2822 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) ∧ 𝑆𝑆) → (𝑀 𝑆) = (𝑀 𝑆))
193, 5, 6, 18ofcval 31353 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) ∧ 𝑆𝑆) → ((𝑀f/c /𝑒 (𝑀 𝑆))‘ 𝑆) = ((𝑀 𝑆) /𝑒 (𝑀 𝑆)))
2017, 19mpdan 685 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → ((𝑀f/c /𝑒 (𝑀 𝑆))‘ 𝑆) = ((𝑀 𝑆) /𝑒 (𝑀 𝑆)))
21 rpre 12391 . . . . 5 ((𝑀 𝑆) ∈ ℝ+ → (𝑀 𝑆) ∈ ℝ)
22 rpne0 12399 . . . . 5 ((𝑀 𝑆) ∈ ℝ+ → (𝑀 𝑆) ≠ 0)
23 xdivid 30599 . . . . 5 (((𝑀 𝑆) ∈ ℝ ∧ (𝑀 𝑆) ≠ 0) → ((𝑀 𝑆) /𝑒 (𝑀 𝑆)) = 1)
2421, 22, 23syl2anc 586 . . . 4 ((𝑀 𝑆) ∈ ℝ+ → ((𝑀 𝑆) /𝑒 (𝑀 𝑆)) = 1)
2524adantl 484 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → ((𝑀 𝑆) /𝑒 (𝑀 𝑆)) = 1)
2615, 20, 253eqtrd 2860 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → ((𝑀f/c /𝑒 (𝑀 𝑆))‘ dom (𝑀f/c /𝑒 (𝑀 𝑆))) = 1)
27 elprob 31662 . 2 ((𝑀f/c /𝑒 (𝑀 𝑆)) ∈ Prob ↔ ((𝑀f/c /𝑒 (𝑀 𝑆)) ∈ ran measures ∧ ((𝑀f/c /𝑒 (𝑀 𝑆))‘ dom (𝑀f/c /𝑒 (𝑀 𝑆))) = 1))
2813, 26, 27sylanbrc 585 1 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → (𝑀f/c /𝑒 (𝑀 𝑆)) ∈ Prob)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016   cuni 4832  dom cdm 5550  ran crn 5551   Fn wfn 6345  cfv 6350  (class class class)co 7150  cr 10530  0cc0 10531  1c1 10532  +crp 12383   /𝑒 cxdiv 30588  f/c cofc 31349  sigAlgebracsiga 31362  measurescmeas 31449  Probcprb 31660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-disj 5025  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-seq 13364  df-hash 13685  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-tset 16578  df-ple 16579  df-ds 16581  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-ordt 16768  df-xrs 16769  df-mre 16851  df-mrc 16852  df-acs 16854  df-ps 17804  df-tsr 17805  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-cntz 18441  df-cmn 18902  df-fbas 20536  df-fg 20537  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-ntr 21622  df-nei 21700  df-cn 21829  df-cnp 21830  df-haus 21917  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-tsms 22729  df-xdiv 30589  df-esum 31282  df-ofc 31350  df-siga 31363  df-meas 31450  df-prob 31661
This theorem is referenced by:  coinflipprob  31732
  Copyright terms: Public domain W3C validator