Users' Mathboxes Mathbox for Filip Cernatescu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  problem5 Structured version   Visualization version   GIF version

Theorem problem5 31292
Description: Practice problem 5. Clues: 3brtr3i 4644 mpbi 220 breqtri 4640 ltaddsubi 10536 remulcli 10001 2re 11037 3re 11041 9re 11054 eqcomi 2630 mvlladdi 10246 3cn 6cn 11049 eqtr3i 2645 6p3e9 11117 addcomi 10174 ltdiv1ii 10900 6re 11048 nngt0i 11001 2nn 11132 divcan3i 10718 recni 9999 2cn 11038 2ne0 11060 mpbir 221 eqtri 2643 mulcomi 9993 3t2e6 11126 divmuli 10726. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
problem5.1 𝐴 ∈ ℝ
problem5.2 ((2 · 𝐴) + 3) < 9
Assertion
Ref Expression
problem5 𝐴 < 3

Proof of Theorem problem5
StepHypRef Expression
1 problem5.2 . . . . 5 ((2 · 𝐴) + 3) < 9
2 2re 11037 . . . . . . 7 2 ∈ ℝ
3 problem5.1 . . . . . . 7 𝐴 ∈ ℝ
42, 3remulcli 10001 . . . . . 6 (2 · 𝐴) ∈ ℝ
5 3re 11041 . . . . . 6 3 ∈ ℝ
6 9re 11054 . . . . . 6 9 ∈ ℝ
74, 5, 6ltaddsubi 10536 . . . . 5 (((2 · 𝐴) + 3) < 9 ↔ (2 · 𝐴) < (9 − 3))
81, 7mpbi 220 . . . 4 (2 · 𝐴) < (9 − 3)
9 3cn 11042 . . . . . 6 3 ∈ ℂ
10 6cn 11049 . . . . . 6 6 ∈ ℂ
11 6p3e9 11117 . . . . . . . 8 (6 + 3) = 9
1210, 9addcomi 10174 . . . . . . . 8 (6 + 3) = (3 + 6)
1311, 12eqtr3i 2645 . . . . . . 7 9 = (3 + 6)
1413eqcomi 2630 . . . . . 6 (3 + 6) = 9
159, 10, 14mvlladdi 10246 . . . . 5 6 = (9 − 3)
1615eqcomi 2630 . . . 4 (9 − 3) = 6
178, 16breqtri 4640 . . 3 (2 · 𝐴) < 6
18 6re 11048 . . . 4 6 ∈ ℝ
19 2nn 11132 . . . . 5 2 ∈ ℕ
2019nngt0i 11001 . . . 4 0 < 2
214, 18, 2, 20ltdiv1ii 10900 . . 3 ((2 · 𝐴) < 6 ↔ ((2 · 𝐴) / 2) < (6 / 2))
2217, 21mpbi 220 . 2 ((2 · 𝐴) / 2) < (6 / 2)
233recni 9999 . . 3 𝐴 ∈ ℂ
24 2cn 11038 . . 3 2 ∈ ℂ
25 2ne0 11060 . . 3 2 ≠ 0
2623, 24, 25divcan3i 10718 . 2 ((2 · 𝐴) / 2) = 𝐴
2724, 9mulcomi 9993 . . . 4 (2 · 3) = (3 · 2)
28 3t2e6 11126 . . . 4 (3 · 2) = 6
2927, 28eqtri 2643 . . 3 (2 · 3) = 6
3010, 24, 9, 25divmuli 10726 . . 3 ((6 / 2) = 3 ↔ (2 · 3) = 6)
3129, 30mpbir 221 . 2 (6 / 2) = 3
3222, 26, 313brtr3i 4644 1 𝐴 < 3
Colors of variables: wff setvar class
Syntax hints:   = wceq 1480  wcel 1987   class class class wbr 4615  (class class class)co 6607  cr 9882   + caddc 9886   · cmul 9888   < clt 10021  cmin 10213   / cdiv 10631  2c2 11017  3c3 11018  6c6 11021  9c9 11024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-4 11028  df-5 11029  df-6 11030  df-7 11031  df-8 11032  df-9 11033
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator