MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prod0 Structured version   Visualization version   GIF version

Theorem prod0 14605
Description: A product over the empty set is one. (Contributed by Scott Fenton, 5-Dec-2017.)
Assertion
Ref Expression
prod0 𝑘 ∈ ∅ 𝐴 = 1

Proof of Theorem prod0
StepHypRef Expression
1 1z 11358 . 2 1 ∈ ℤ
2 nnuz 11674 . . 3 ℕ = (ℤ‘1)
3 id 22 . . 3 (1 ∈ ℤ → 1 ∈ ℤ)
4 ax-1ne0 9956 . . . 4 1 ≠ 0
54a1i 11 . . 3 (1 ∈ ℤ → 1 ≠ 0)
62prodfclim1 14557 . . 3 (1 ∈ ℤ → seq1( · , (ℕ × {1})) ⇝ 1)
7 0ss 3949 . . . 4 ∅ ⊆ ℕ
87a1i 11 . . 3 (1 ∈ ℤ → ∅ ⊆ ℕ)
9 fvconst2g 6427 . . . 4 ((1 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {1})‘𝑘) = 1)
10 noel 3900 . . . . 5 ¬ 𝑘 ∈ ∅
1110iffalsei 4073 . . . 4 if(𝑘 ∈ ∅, 𝐴, 1) = 1
129, 11syl6eqr 2673 . . 3 ((1 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {1})‘𝑘) = if(𝑘 ∈ ∅, 𝐴, 1))
1310pm2.21i 116 . . . 4 (𝑘 ∈ ∅ → 𝐴 ∈ ℂ)
1413adantl 482 . . 3 ((1 ∈ ℤ ∧ 𝑘 ∈ ∅) → 𝐴 ∈ ℂ)
152, 3, 5, 6, 8, 12, 14zprodn0 14601 . 2 (1 ∈ ℤ → ∏𝑘 ∈ ∅ 𝐴 = 1)
161, 15ax-mp 5 1 𝑘 ∈ ∅ 𝐴 = 1
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1480  wcel 1987  wne 2790  wss 3559  c0 3896  ifcif 4063  {csn 4153   × cxp 5077  cfv 5852  cc 9885  0cc0 9887  1c1 9888  cn 10971  cz 11328  cprod 14567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-sup 8299  df-oi 8366  df-card 8716  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-n0 11244  df-z 11329  df-uz 11639  df-rp 11784  df-fz 12276  df-fzo 12414  df-seq 12749  df-exp 12808  df-hash 13065  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-clim 14160  df-prod 14568
This theorem is referenced by:  prod1  14606  fprodf1o  14608  fprodcllem  14613  fprodmul  14622  fproddiv  14623  fprodfac  14635  fprodconst  14640  fprodn0  14641  fprod2d  14643  fprodmodd  14660  risefac0  14690  coprmprod  15306  coprmproddvds  15308  prmo0  15671  gausslemma2dlem4  25007  bcprod  31359  fprodexp  39253  fprodabs2  39254  mccl  39257  fprodcn  39259  fprodcncf  39440  dvmptfprod  39488  dvnprodlem3  39491
  Copyright terms: Public domain W3C validator