MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prod1 Structured version   Visualization version   GIF version

Theorem prod1 15300
Description: Any product of one over a valid set is one. (Contributed by Scott Fenton, 7-Dec-2017.)
Assertion
Ref Expression
prod1 ((𝐴 ⊆ (ℤ𝑀) ∨ 𝐴 ∈ Fin) → ∏𝑘𝐴 1 = 1)
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀

Proof of Theorem prod1
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . . 4 (ℤ𝑀) = (ℤ𝑀)
2 simpr 487 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
3 ax-1ne0 10608 . . . . 5 1 ≠ 0
43a1i 11 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → 1 ≠ 0)
51prodfclim1 15251 . . . . 5 (𝑀 ∈ ℤ → seq𝑀( · , ((ℤ𝑀) × {1})) ⇝ 1)
65adantl 484 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → seq𝑀( · , ((ℤ𝑀) × {1})) ⇝ 1)
7 simpl 485 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → 𝐴 ⊆ (ℤ𝑀))
8 1ex 10639 . . . . . . 7 1 ∈ V
98fvconst2 6968 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → (((ℤ𝑀) × {1})‘𝑘) = 1)
10 ifid 4508 . . . . . 6 if(𝑘𝐴, 1, 1) = 1
119, 10syl6eqr 2876 . . . . 5 (𝑘 ∈ (ℤ𝑀) → (((ℤ𝑀) × {1})‘𝑘) = if(𝑘𝐴, 1, 1))
1211adantl 484 . . . 4 (((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ (ℤ𝑀)) → (((ℤ𝑀) × {1})‘𝑘) = if(𝑘𝐴, 1, 1))
13 1cnd 10638 . . . 4 (((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) ∧ 𝑘𝐴) → 1 ∈ ℂ)
141, 2, 4, 6, 7, 12, 13zprodn0 15295 . . 3 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → ∏𝑘𝐴 1 = 1)
15 uzf 12249 . . . . . . . . 9 :ℤ⟶𝒫 ℤ
1615fdmi 6526 . . . . . . . 8 dom ℤ = ℤ
1716eleq2i 2906 . . . . . . 7 (𝑀 ∈ dom ℤ𝑀 ∈ ℤ)
18 ndmfv 6702 . . . . . . 7 𝑀 ∈ dom ℤ → (ℤ𝑀) = ∅)
1917, 18sylnbir 333 . . . . . 6 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
2019sseq2d 4001 . . . . 5 𝑀 ∈ ℤ → (𝐴 ⊆ (ℤ𝑀) ↔ 𝐴 ⊆ ∅))
2120biimpac 481 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 ⊆ ∅)
22 ss0 4354 . . . 4 (𝐴 ⊆ ∅ → 𝐴 = ∅)
23 prodeq1 15265 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 1 = ∏𝑘 ∈ ∅ 1)
24 prod0 15299 . . . . 5 𝑘 ∈ ∅ 1 = 1
2523, 24syl6eq 2874 . . . 4 (𝐴 = ∅ → ∏𝑘𝐴 1 = 1)
2621, 22, 253syl 18 . . 3 ((𝐴 ⊆ (ℤ𝑀) ∧ ¬ 𝑀 ∈ ℤ) → ∏𝑘𝐴 1 = 1)
2714, 26pm2.61dan 811 . 2 (𝐴 ⊆ (ℤ𝑀) → ∏𝑘𝐴 1 = 1)
28 fz1f1o 15069 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
29 eqidd 2824 . . . . . . . . 9 (𝑘 = (𝑓𝑗) → 1 = 1)
30 simpl 485 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (♯‘𝐴) ∈ ℕ)
31 simpr 487 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
32 1cnd 10638 . . . . . . . . 9 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑘𝐴) → 1 ∈ ℂ)
33 elfznn 12939 . . . . . . . . . . 11 (𝑗 ∈ (1...(♯‘𝐴)) → 𝑗 ∈ ℕ)
348fvconst2 6968 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((ℕ × {1})‘𝑗) = 1)
3533, 34syl 17 . . . . . . . . . 10 (𝑗 ∈ (1...(♯‘𝐴)) → ((ℕ × {1})‘𝑗) = 1)
3635adantl 484 . . . . . . . . 9 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑗 ∈ (1...(♯‘𝐴))) → ((ℕ × {1})‘𝑗) = 1)
3729, 30, 31, 32, 36fprod 15297 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = (seq1( · , (ℕ × {1}))‘(♯‘𝐴)))
38 nnuz 12284 . . . . . . . . . 10 ℕ = (ℤ‘1)
3938prodf1 15249 . . . . . . . . 9 ((♯‘𝐴) ∈ ℕ → (seq1( · , (ℕ × {1}))‘(♯‘𝐴)) = 1)
4039adantr 483 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1( · , (ℕ × {1}))‘(♯‘𝐴)) = 1)
4137, 40eqtrd 2858 . . . . . . 7 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = 1)
4241ex 415 . . . . . 6 ((♯‘𝐴) ∈ ℕ → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 1 = 1))
4342exlimdv 1934 . . . . 5 ((♯‘𝐴) ∈ ℕ → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 1 = 1))
4443imp 409 . . . 4 (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = 1)
4525, 44jaoi 853 . . 3 ((𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 1 = 1)
4628, 45syl 17 . 2 (𝐴 ∈ Fin → ∏𝑘𝐴 1 = 1)
4727, 46jaoi 853 1 ((𝐴 ⊆ (ℤ𝑀) ∨ 𝐴 ∈ Fin) → ∏𝑘𝐴 1 = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1537  wex 1780  wcel 2114  wne 3018  wss 3938  c0 4293  ifcif 4469  𝒫 cpw 4541  {csn 4569   class class class wbr 5068   × cxp 5555  dom cdm 5557  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  Fincfn 8511  0cc0 10539  1c1 10540   · cmul 10544  cn 11640  cz 11984  cuz 12246  ...cfz 12895  seqcseq 13372  chash 13693  cli 14843  cprod 15261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-prod 15262
This theorem is referenced by:  fprodex01  30543  etransclem35  42561
  Copyright terms: Public domain W3C validator