Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prod1 Structured version   Visualization version   GIF version

Theorem prod1 14873
 Description: Any product of one over a valid set is one. (Contributed by Scott Fenton, 7-Dec-2017.)
Assertion
Ref Expression
prod1 ((𝐴 ⊆ (ℤ𝑀) ∨ 𝐴 ∈ Fin) → ∏𝑘𝐴 1 = 1)
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀

Proof of Theorem prod1
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2760 . . . 4 (ℤ𝑀) = (ℤ𝑀)
2 simpr 479 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
3 ax-1ne0 10197 . . . . 5 1 ≠ 0
43a1i 11 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → 1 ≠ 0)
51prodfclim1 14824 . . . . 5 (𝑀 ∈ ℤ → seq𝑀( · , ((ℤ𝑀) × {1})) ⇝ 1)
65adantl 473 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → seq𝑀( · , ((ℤ𝑀) × {1})) ⇝ 1)
7 simpl 474 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → 𝐴 ⊆ (ℤ𝑀))
8 1ex 10227 . . . . . . 7 1 ∈ V
98fvconst2 6633 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → (((ℤ𝑀) × {1})‘𝑘) = 1)
10 ifid 4269 . . . . . 6 if(𝑘𝐴, 1, 1) = 1
119, 10syl6eqr 2812 . . . . 5 (𝑘 ∈ (ℤ𝑀) → (((ℤ𝑀) × {1})‘𝑘) = if(𝑘𝐴, 1, 1))
1211adantl 473 . . . 4 (((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ (ℤ𝑀)) → (((ℤ𝑀) × {1})‘𝑘) = if(𝑘𝐴, 1, 1))
13 1cnd 10248 . . . 4 (((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) ∧ 𝑘𝐴) → 1 ∈ ℂ)
141, 2, 4, 6, 7, 12, 13zprodn0 14868 . . 3 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → ∏𝑘𝐴 1 = 1)
15 uzf 11882 . . . . . . . . 9 :ℤ⟶𝒫 ℤ
1615fdmi 6213 . . . . . . . 8 dom ℤ = ℤ
1716eleq2i 2831 . . . . . . 7 (𝑀 ∈ dom ℤ𝑀 ∈ ℤ)
18 ndmfv 6379 . . . . . . 7 𝑀 ∈ dom ℤ → (ℤ𝑀) = ∅)
1917, 18sylnbir 320 . . . . . 6 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
2019sseq2d 3774 . . . . 5 𝑀 ∈ ℤ → (𝐴 ⊆ (ℤ𝑀) ↔ 𝐴 ⊆ ∅))
2120biimpac 504 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 ⊆ ∅)
22 ss0 4117 . . . 4 (𝐴 ⊆ ∅ → 𝐴 = ∅)
23 prodeq1 14838 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 1 = ∏𝑘 ∈ ∅ 1)
24 prod0 14872 . . . . 5 𝑘 ∈ ∅ 1 = 1
2523, 24syl6eq 2810 . . . 4 (𝐴 = ∅ → ∏𝑘𝐴 1 = 1)
2621, 22, 253syl 18 . . 3 ((𝐴 ⊆ (ℤ𝑀) ∧ ¬ 𝑀 ∈ ℤ) → ∏𝑘𝐴 1 = 1)
2714, 26pm2.61dan 867 . 2 (𝐴 ⊆ (ℤ𝑀) → ∏𝑘𝐴 1 = 1)
28 fz1f1o 14640 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
29 eqidd 2761 . . . . . . . . 9 (𝑘 = (𝑓𝑗) → 1 = 1)
30 simpl 474 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (♯‘𝐴) ∈ ℕ)
31 simpr 479 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
32 1cnd 10248 . . . . . . . . 9 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑘𝐴) → 1 ∈ ℂ)
33 elfznn 12563 . . . . . . . . . . 11 (𝑗 ∈ (1...(♯‘𝐴)) → 𝑗 ∈ ℕ)
348fvconst2 6633 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((ℕ × {1})‘𝑗) = 1)
3533, 34syl 17 . . . . . . . . . 10 (𝑗 ∈ (1...(♯‘𝐴)) → ((ℕ × {1})‘𝑗) = 1)
3635adantl 473 . . . . . . . . 9 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑗 ∈ (1...(♯‘𝐴))) → ((ℕ × {1})‘𝑗) = 1)
3729, 30, 31, 32, 36fprod 14870 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = (seq1( · , (ℕ × {1}))‘(♯‘𝐴)))
38 nnuz 11916 . . . . . . . . . 10 ℕ = (ℤ‘1)
3938prodf1 14822 . . . . . . . . 9 ((♯‘𝐴) ∈ ℕ → (seq1( · , (ℕ × {1}))‘(♯‘𝐴)) = 1)
4039adantr 472 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1( · , (ℕ × {1}))‘(♯‘𝐴)) = 1)
4137, 40eqtrd 2794 . . . . . . 7 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = 1)
4241ex 449 . . . . . 6 ((♯‘𝐴) ∈ ℕ → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 1 = 1))
4342exlimdv 2010 . . . . 5 ((♯‘𝐴) ∈ ℕ → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 1 = 1))
4443imp 444 . . . 4 (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = 1)
4525, 44jaoi 393 . . 3 ((𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 1 = 1)
4628, 45syl 17 . 2 (𝐴 ∈ Fin → ∏𝑘𝐴 1 = 1)
4727, 46jaoi 393 1 ((𝐴 ⊆ (ℤ𝑀) ∨ 𝐴 ∈ Fin) → ∏𝑘𝐴 1 = 1)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 382   ∧ wa 383   = wceq 1632  ∃wex 1853   ∈ wcel 2139   ≠ wne 2932   ⊆ wss 3715  ∅c0 4058  ifcif 4230  𝒫 cpw 4302  {csn 4321   class class class wbr 4804   × cxp 5264  dom cdm 5266  –1-1-onto→wf1o 6048  ‘cfv 6049  (class class class)co 6813  Fincfn 8121  0cc0 10128  1c1 10129   · cmul 10133  ℕcn 11212  ℤcz 11569  ℤ≥cuz 11879  ...cfz 12519  seqcseq 12995  ♯chash 13311   ⇝ cli 14414  ∏cprod 14834 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-fz 12520  df-fzo 12660  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-prod 14835 This theorem is referenced by:  fprodex01  29880  etransclem35  40989
 Copyright terms: Public domain W3C validator