Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodf1f Structured version   Visualization version   GIF version

Theorem prodf1f 14549
 Description: A one-valued infinite product is equal to the constant one function. (Contributed by Scott Fenton, 5-Dec-2017.)
Hypothesis
Ref Expression
prodf1.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
prodf1f (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}))

Proof of Theorem prodf1f
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 prodf1.1 . . . . 5 𝑍 = (ℤ𝑀)
21prodf1 14548 . . . 4 (𝑘𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑘) = 1)
3 1ex 9979 . . . . 5 1 ∈ V
43fvconst2 6423 . . . 4 (𝑘𝑍 → ((𝑍 × {1})‘𝑘) = 1)
52, 4eqtr4d 2658 . . 3 (𝑘𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘))
65rgen 2917 . 2 𝑘𝑍 (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘)
7 seqfn 12753 . . . 4 (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) Fn (ℤ𝑀))
81fneq2i 5944 . . . 4 (seq𝑀( · , (𝑍 × {1})) Fn 𝑍 ↔ seq𝑀( · , (𝑍 × {1})) Fn (ℤ𝑀))
97, 8sylibr 224 . . 3 (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) Fn 𝑍)
103fconst 6048 . . . 4 (𝑍 × {1}):𝑍⟶{1}
11 ffn 6002 . . . 4 ((𝑍 × {1}):𝑍⟶{1} → (𝑍 × {1}) Fn 𝑍)
1210, 11ax-mp 5 . . 3 (𝑍 × {1}) Fn 𝑍
13 eqfnfv 6267 . . 3 ((seq𝑀( · , (𝑍 × {1})) Fn 𝑍 ∧ (𝑍 × {1}) Fn 𝑍) → (seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}) ↔ ∀𝑘𝑍 (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘)))
149, 12, 13sylancl 693 . 2 (𝑀 ∈ ℤ → (seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}) ↔ ∀𝑘𝑍 (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘)))
156, 14mpbiri 248 1 (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1480   ∈ wcel 1987  ∀wral 2907  {csn 4148   × cxp 5072   Fn wfn 5842  ⟶wf 5843  ‘cfv 5847  1c1 9881   · cmul 9885  ℤcz 11321  ℤ≥cuz 11631  seqcseq 12741 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-seq 12742 This theorem is referenced by:  prodfclim1  14550
 Copyright terms: Public domain W3C validator