Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prsiga Structured version   Visualization version   GIF version

Theorem prsiga 29972
Description: The smallest possible sigma-algebra containing 𝑂. (Contributed by Thierry Arnoux, 13-Sep-2016.)
Assertion
Ref Expression
prsiga (𝑂𝑉 → {∅, 𝑂} ∈ (sigAlgebra‘𝑂))

Proof of Theorem prsiga
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0elpw 4794 . . 3 ∅ ∈ 𝒫 𝑂
2 pwidg 4144 . . 3 (𝑂𝑉𝑂 ∈ 𝒫 𝑂)
3 prssi 4321 . . 3 ((∅ ∈ 𝒫 𝑂𝑂 ∈ 𝒫 𝑂) → {∅, 𝑂} ⊆ 𝒫 𝑂)
41, 2, 3sylancr 694 . 2 (𝑂𝑉 → {∅, 𝑂} ⊆ 𝒫 𝑂)
5 prid2g 4266 . . 3 (𝑂𝑉𝑂 ∈ {∅, 𝑂})
6 dif0 3924 . . . . 5 (𝑂 ∖ ∅) = 𝑂
76, 5syl5eqel 2702 . . . 4 (𝑂𝑉 → (𝑂 ∖ ∅) ∈ {∅, 𝑂})
8 difid 3922 . . . . 5 (𝑂𝑂) = ∅
9 0ex 4750 . . . . . . 7 ∅ ∈ V
109prid1 4267 . . . . . 6 ∅ ∈ {∅, 𝑂}
1110a1i 11 . . . . 5 (𝑂𝑉 → ∅ ∈ {∅, 𝑂})
128, 11syl5eqel 2702 . . . 4 (𝑂𝑉 → (𝑂𝑂) ∈ {∅, 𝑂})
13 difeq2 3700 . . . . . . 7 (𝑥 = ∅ → (𝑂𝑥) = (𝑂 ∖ ∅))
1413eleq1d 2683 . . . . . 6 (𝑥 = ∅ → ((𝑂𝑥) ∈ {∅, 𝑂} ↔ (𝑂 ∖ ∅) ∈ {∅, 𝑂}))
15 difeq2 3700 . . . . . . 7 (𝑥 = 𝑂 → (𝑂𝑥) = (𝑂𝑂))
1615eleq1d 2683 . . . . . 6 (𝑥 = 𝑂 → ((𝑂𝑥) ∈ {∅, 𝑂} ↔ (𝑂𝑂) ∈ {∅, 𝑂}))
1714, 16ralprg 4205 . . . . 5 ((∅ ∈ V ∧ 𝑂𝑉) → (∀𝑥 ∈ {∅, 𝑂} (𝑂𝑥) ∈ {∅, 𝑂} ↔ ((𝑂 ∖ ∅) ∈ {∅, 𝑂} ∧ (𝑂𝑂) ∈ {∅, 𝑂})))
189, 17mpan 705 . . . 4 (𝑂𝑉 → (∀𝑥 ∈ {∅, 𝑂} (𝑂𝑥) ∈ {∅, 𝑂} ↔ ((𝑂 ∖ ∅) ∈ {∅, 𝑂} ∧ (𝑂𝑂) ∈ {∅, 𝑂})))
197, 12, 18mpbir2and 956 . . 3 (𝑂𝑉 → ∀𝑥 ∈ {∅, 𝑂} (𝑂𝑥) ∈ {∅, 𝑂})
20 uni0 4431 . . . . . . . . 9 ∅ = ∅
2120, 10eqeltri 2694 . . . . . . . 8 ∅ ∈ {∅, 𝑂}
229unisn 4417 . . . . . . . . 9 {∅} = ∅
2322, 10eqeltri 2694 . . . . . . . 8 {∅} ∈ {∅, 𝑂}
2421, 23pm3.2i 471 . . . . . . 7 ( ∅ ∈ {∅, 𝑂} ∧ {∅} ∈ {∅, 𝑂})
25 snex 4869 . . . . . . . . 9 {∅} ∈ V
269, 25pm3.2i 471 . . . . . . . 8 (∅ ∈ V ∧ {∅} ∈ V)
27 unieq 4410 . . . . . . . . . 10 (𝑥 = ∅ → 𝑥 = ∅)
2827eleq1d 2683 . . . . . . . . 9 (𝑥 = ∅ → ( 𝑥 ∈ {∅, 𝑂} ↔ ∅ ∈ {∅, 𝑂}))
29 unieq 4410 . . . . . . . . . 10 (𝑥 = {∅} → 𝑥 = {∅})
3029eleq1d 2683 . . . . . . . . 9 (𝑥 = {∅} → ( 𝑥 ∈ {∅, 𝑂} ↔ {∅} ∈ {∅, 𝑂}))
3128, 30ralprg 4205 . . . . . . . 8 ((∅ ∈ V ∧ {∅} ∈ V) → (∀𝑥 ∈ {∅, {∅}} 𝑥 ∈ {∅, 𝑂} ↔ ( ∅ ∈ {∅, 𝑂} ∧ {∅} ∈ {∅, 𝑂})))
3226, 31mp1i 13 . . . . . . 7 (𝑂𝑉 → (∀𝑥 ∈ {∅, {∅}} 𝑥 ∈ {∅, 𝑂} ↔ ( ∅ ∈ {∅, 𝑂} ∧ {∅} ∈ {∅, 𝑂})))
3324, 32mpbiri 248 . . . . . 6 (𝑂𝑉 → ∀𝑥 ∈ {∅, {∅}} 𝑥 ∈ {∅, 𝑂})
34 unisng 4418 . . . . . . . 8 (𝑂𝑉 {𝑂} = 𝑂)
3534, 5eqeltrd 2698 . . . . . . 7 (𝑂𝑉 {𝑂} ∈ {∅, 𝑂})
36 uniprg 4416 . . . . . . . . . 10 ((∅ ∈ V ∧ 𝑂𝑉) → {∅, 𝑂} = (∅ ∪ 𝑂))
379, 36mpan 705 . . . . . . . . 9 (𝑂𝑉 {∅, 𝑂} = (∅ ∪ 𝑂))
38 uncom 3735 . . . . . . . . . 10 (∅ ∪ 𝑂) = (𝑂 ∪ ∅)
39 un0 3939 . . . . . . . . . 10 (𝑂 ∪ ∅) = 𝑂
4038, 39eqtri 2643 . . . . . . . . 9 (∅ ∪ 𝑂) = 𝑂
4137, 40syl6eq 2671 . . . . . . . 8 (𝑂𝑉 {∅, 𝑂} = 𝑂)
4241, 5eqeltrd 2698 . . . . . . 7 (𝑂𝑉 {∅, 𝑂} ∈ {∅, 𝑂})
43 snex 4869 . . . . . . . . 9 {𝑂} ∈ V
44 prex 4870 . . . . . . . . 9 {∅, 𝑂} ∈ V
4543, 44pm3.2i 471 . . . . . . . 8 ({𝑂} ∈ V ∧ {∅, 𝑂} ∈ V)
46 unieq 4410 . . . . . . . . . 10 (𝑥 = {𝑂} → 𝑥 = {𝑂})
4746eleq1d 2683 . . . . . . . . 9 (𝑥 = {𝑂} → ( 𝑥 ∈ {∅, 𝑂} ↔ {𝑂} ∈ {∅, 𝑂}))
48 unieq 4410 . . . . . . . . . 10 (𝑥 = {∅, 𝑂} → 𝑥 = {∅, 𝑂})
4948eleq1d 2683 . . . . . . . . 9 (𝑥 = {∅, 𝑂} → ( 𝑥 ∈ {∅, 𝑂} ↔ {∅, 𝑂} ∈ {∅, 𝑂}))
5047, 49ralprg 4205 . . . . . . . 8 (({𝑂} ∈ V ∧ {∅, 𝑂} ∈ V) → (∀𝑥 ∈ {{𝑂}, {∅, 𝑂}} 𝑥 ∈ {∅, 𝑂} ↔ ( {𝑂} ∈ {∅, 𝑂} ∧ {∅, 𝑂} ∈ {∅, 𝑂})))
5145, 50mp1i 13 . . . . . . 7 (𝑂𝑉 → (∀𝑥 ∈ {{𝑂}, {∅, 𝑂}} 𝑥 ∈ {∅, 𝑂} ↔ ( {𝑂} ∈ {∅, 𝑂} ∧ {∅, 𝑂} ∈ {∅, 𝑂})))
5235, 42, 51mpbir2and 956 . . . . . 6 (𝑂𝑉 → ∀𝑥 ∈ {{𝑂}, {∅, 𝑂}} 𝑥 ∈ {∅, 𝑂})
53 ralun 3773 . . . . . 6 ((∀𝑥 ∈ {∅, {∅}} 𝑥 ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ {{𝑂}, {∅, 𝑂}} 𝑥 ∈ {∅, 𝑂}) → ∀𝑥 ∈ ({∅, {∅}} ∪ {{𝑂}, {∅, 𝑂}}) 𝑥 ∈ {∅, 𝑂})
5433, 52, 53syl2anc 692 . . . . 5 (𝑂𝑉 → ∀𝑥 ∈ ({∅, {∅}} ∪ {{𝑂}, {∅, 𝑂}}) 𝑥 ∈ {∅, 𝑂})
55 pwpr 4398 . . . . . 6 𝒫 {∅, 𝑂} = ({∅, {∅}} ∪ {{𝑂}, {∅, 𝑂}})
5655raleqi 3131 . . . . 5 (∀𝑥 ∈ 𝒫 {∅, 𝑂} 𝑥 ∈ {∅, 𝑂} ↔ ∀𝑥 ∈ ({∅, {∅}} ∪ {{𝑂}, {∅, 𝑂}}) 𝑥 ∈ {∅, 𝑂})
5754, 56sylibr 224 . . . 4 (𝑂𝑉 → ∀𝑥 ∈ 𝒫 {∅, 𝑂} 𝑥 ∈ {∅, 𝑂})
58 ax-1 6 . . . . 5 ( 𝑥 ∈ {∅, 𝑂} → (𝑥 ≼ ω → 𝑥 ∈ {∅, 𝑂}))
5958ralimi 2947 . . . 4 (∀𝑥 ∈ 𝒫 {∅, 𝑂} 𝑥 ∈ {∅, 𝑂} → ∀𝑥 ∈ 𝒫 {∅, 𝑂} (𝑥 ≼ ω → 𝑥 ∈ {∅, 𝑂}))
6057, 59syl 17 . . 3 (𝑂𝑉 → ∀𝑥 ∈ 𝒫 {∅, 𝑂} (𝑥 ≼ ω → 𝑥 ∈ {∅, 𝑂}))
615, 19, 603jca 1240 . 2 (𝑂𝑉 → (𝑂 ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ {∅, 𝑂} (𝑂𝑥) ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ 𝒫 {∅, 𝑂} (𝑥 ≼ ω → 𝑥 ∈ {∅, 𝑂})))
62 issiga 29952 . . 3 ({∅, 𝑂} ∈ V → ({∅, 𝑂} ∈ (sigAlgebra‘𝑂) ↔ ({∅, 𝑂} ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ {∅, 𝑂} (𝑂𝑥) ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ 𝒫 {∅, 𝑂} (𝑥 ≼ ω → 𝑥 ∈ {∅, 𝑂})))))
6344, 62ax-mp 5 . 2 ({∅, 𝑂} ∈ (sigAlgebra‘𝑂) ↔ ({∅, 𝑂} ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ {∅, 𝑂} (𝑂𝑥) ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ 𝒫 {∅, 𝑂} (𝑥 ≼ ω → 𝑥 ∈ {∅, 𝑂}))))
644, 61, 63sylanbrc 697 1 (𝑂𝑉 → {∅, 𝑂} ∈ (sigAlgebra‘𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  Vcvv 3186  cdif 3552  cun 3553  wss 3555  c0 3891  𝒫 cpw 4130  {csn 4148  {cpr 4150   cuni 4402   class class class wbr 4613  cfv 5847  ωcom 7012  cdom 7897  sigAlgebracsiga 29948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-iota 5810  df-fun 5849  df-fv 5855  df-siga 29949
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator