Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prsiga Structured version   Visualization version   GIF version

Theorem prsiga 30495
Description: The smallest possible sigma-algebra containing 𝑂. (Contributed by Thierry Arnoux, 13-Sep-2016.)
Assertion
Ref Expression
prsiga (𝑂𝑉 → {∅, 𝑂} ∈ (sigAlgebra‘𝑂))

Proof of Theorem prsiga
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0elpw 4975 . . 3 ∅ ∈ 𝒫 𝑂
2 pwidg 4309 . . 3 (𝑂𝑉𝑂 ∈ 𝒫 𝑂)
3 prssi 4490 . . 3 ((∅ ∈ 𝒫 𝑂𝑂 ∈ 𝒫 𝑂) → {∅, 𝑂} ⊆ 𝒫 𝑂)
41, 2, 3sylancr 698 . 2 (𝑂𝑉 → {∅, 𝑂} ⊆ 𝒫 𝑂)
5 prid2g 4432 . . 3 (𝑂𝑉𝑂 ∈ {∅, 𝑂})
6 dif0 4085 . . . . 5 (𝑂 ∖ ∅) = 𝑂
76, 5syl5eqel 2835 . . . 4 (𝑂𝑉 → (𝑂 ∖ ∅) ∈ {∅, 𝑂})
8 difid 4083 . . . . 5 (𝑂𝑂) = ∅
9 0ex 4934 . . . . . . 7 ∅ ∈ V
109prid1 4433 . . . . . 6 ∅ ∈ {∅, 𝑂}
1110a1i 11 . . . . 5 (𝑂𝑉 → ∅ ∈ {∅, 𝑂})
128, 11syl5eqel 2835 . . . 4 (𝑂𝑉 → (𝑂𝑂) ∈ {∅, 𝑂})
13 difeq2 3857 . . . . . . 7 (𝑥 = ∅ → (𝑂𝑥) = (𝑂 ∖ ∅))
1413eleq1d 2816 . . . . . 6 (𝑥 = ∅ → ((𝑂𝑥) ∈ {∅, 𝑂} ↔ (𝑂 ∖ ∅) ∈ {∅, 𝑂}))
15 difeq2 3857 . . . . . . 7 (𝑥 = 𝑂 → (𝑂𝑥) = (𝑂𝑂))
1615eleq1d 2816 . . . . . 6 (𝑥 = 𝑂 → ((𝑂𝑥) ∈ {∅, 𝑂} ↔ (𝑂𝑂) ∈ {∅, 𝑂}))
1714, 16ralprg 4370 . . . . 5 ((∅ ∈ V ∧ 𝑂𝑉) → (∀𝑥 ∈ {∅, 𝑂} (𝑂𝑥) ∈ {∅, 𝑂} ↔ ((𝑂 ∖ ∅) ∈ {∅, 𝑂} ∧ (𝑂𝑂) ∈ {∅, 𝑂})))
189, 17mpan 708 . . . 4 (𝑂𝑉 → (∀𝑥 ∈ {∅, 𝑂} (𝑂𝑥) ∈ {∅, 𝑂} ↔ ((𝑂 ∖ ∅) ∈ {∅, 𝑂} ∧ (𝑂𝑂) ∈ {∅, 𝑂})))
197, 12, 18mpbir2and 995 . . 3 (𝑂𝑉 → ∀𝑥 ∈ {∅, 𝑂} (𝑂𝑥) ∈ {∅, 𝑂})
20 uni0 4609 . . . . . . . . 9 ∅ = ∅
2120, 10eqeltri 2827 . . . . . . . 8 ∅ ∈ {∅, 𝑂}
229unisn 4595 . . . . . . . . 9 {∅} = ∅
2322, 10eqeltri 2827 . . . . . . . 8 {∅} ∈ {∅, 𝑂}
2421, 23pm3.2i 470 . . . . . . 7 ( ∅ ∈ {∅, 𝑂} ∧ {∅} ∈ {∅, 𝑂})
25 snex 5049 . . . . . . . . 9 {∅} ∈ V
269, 25pm3.2i 470 . . . . . . . 8 (∅ ∈ V ∧ {∅} ∈ V)
27 unieq 4588 . . . . . . . . . 10 (𝑥 = ∅ → 𝑥 = ∅)
2827eleq1d 2816 . . . . . . . . 9 (𝑥 = ∅ → ( 𝑥 ∈ {∅, 𝑂} ↔ ∅ ∈ {∅, 𝑂}))
29 unieq 4588 . . . . . . . . . 10 (𝑥 = {∅} → 𝑥 = {∅})
3029eleq1d 2816 . . . . . . . . 9 (𝑥 = {∅} → ( 𝑥 ∈ {∅, 𝑂} ↔ {∅} ∈ {∅, 𝑂}))
3128, 30ralprg 4370 . . . . . . . 8 ((∅ ∈ V ∧ {∅} ∈ V) → (∀𝑥 ∈ {∅, {∅}} 𝑥 ∈ {∅, 𝑂} ↔ ( ∅ ∈ {∅, 𝑂} ∧ {∅} ∈ {∅, 𝑂})))
3226, 31mp1i 13 . . . . . . 7 (𝑂𝑉 → (∀𝑥 ∈ {∅, {∅}} 𝑥 ∈ {∅, 𝑂} ↔ ( ∅ ∈ {∅, 𝑂} ∧ {∅} ∈ {∅, 𝑂})))
3324, 32mpbiri 248 . . . . . 6 (𝑂𝑉 → ∀𝑥 ∈ {∅, {∅}} 𝑥 ∈ {∅, 𝑂})
34 unisng 4596 . . . . . . . 8 (𝑂𝑉 {𝑂} = 𝑂)
3534, 5eqeltrd 2831 . . . . . . 7 (𝑂𝑉 {𝑂} ∈ {∅, 𝑂})
36 uniprg 4594 . . . . . . . . . 10 ((∅ ∈ V ∧ 𝑂𝑉) → {∅, 𝑂} = (∅ ∪ 𝑂))
379, 36mpan 708 . . . . . . . . 9 (𝑂𝑉 {∅, 𝑂} = (∅ ∪ 𝑂))
38 uncom 3892 . . . . . . . . . 10 (∅ ∪ 𝑂) = (𝑂 ∪ ∅)
39 un0 4102 . . . . . . . . . 10 (𝑂 ∪ ∅) = 𝑂
4038, 39eqtri 2774 . . . . . . . . 9 (∅ ∪ 𝑂) = 𝑂
4137, 40syl6eq 2802 . . . . . . . 8 (𝑂𝑉 {∅, 𝑂} = 𝑂)
4241, 5eqeltrd 2831 . . . . . . 7 (𝑂𝑉 {∅, 𝑂} ∈ {∅, 𝑂})
43 snex 5049 . . . . . . . . 9 {𝑂} ∈ V
44 prex 5050 . . . . . . . . 9 {∅, 𝑂} ∈ V
4543, 44pm3.2i 470 . . . . . . . 8 ({𝑂} ∈ V ∧ {∅, 𝑂} ∈ V)
46 unieq 4588 . . . . . . . . . 10 (𝑥 = {𝑂} → 𝑥 = {𝑂})
4746eleq1d 2816 . . . . . . . . 9 (𝑥 = {𝑂} → ( 𝑥 ∈ {∅, 𝑂} ↔ {𝑂} ∈ {∅, 𝑂}))
48 unieq 4588 . . . . . . . . . 10 (𝑥 = {∅, 𝑂} → 𝑥 = {∅, 𝑂})
4948eleq1d 2816 . . . . . . . . 9 (𝑥 = {∅, 𝑂} → ( 𝑥 ∈ {∅, 𝑂} ↔ {∅, 𝑂} ∈ {∅, 𝑂}))
5047, 49ralprg 4370 . . . . . . . 8 (({𝑂} ∈ V ∧ {∅, 𝑂} ∈ V) → (∀𝑥 ∈ {{𝑂}, {∅, 𝑂}} 𝑥 ∈ {∅, 𝑂} ↔ ( {𝑂} ∈ {∅, 𝑂} ∧ {∅, 𝑂} ∈ {∅, 𝑂})))
5145, 50mp1i 13 . . . . . . 7 (𝑂𝑉 → (∀𝑥 ∈ {{𝑂}, {∅, 𝑂}} 𝑥 ∈ {∅, 𝑂} ↔ ( {𝑂} ∈ {∅, 𝑂} ∧ {∅, 𝑂} ∈ {∅, 𝑂})))
5235, 42, 51mpbir2and 995 . . . . . 6 (𝑂𝑉 → ∀𝑥 ∈ {{𝑂}, {∅, 𝑂}} 𝑥 ∈ {∅, 𝑂})
53 ralun 3930 . . . . . 6 ((∀𝑥 ∈ {∅, {∅}} 𝑥 ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ {{𝑂}, {∅, 𝑂}} 𝑥 ∈ {∅, 𝑂}) → ∀𝑥 ∈ ({∅, {∅}} ∪ {{𝑂}, {∅, 𝑂}}) 𝑥 ∈ {∅, 𝑂})
5433, 52, 53syl2anc 696 . . . . 5 (𝑂𝑉 → ∀𝑥 ∈ ({∅, {∅}} ∪ {{𝑂}, {∅, 𝑂}}) 𝑥 ∈ {∅, 𝑂})
55 pwpr 4574 . . . . . 6 𝒫 {∅, 𝑂} = ({∅, {∅}} ∪ {{𝑂}, {∅, 𝑂}})
5655raleqi 3273 . . . . 5 (∀𝑥 ∈ 𝒫 {∅, 𝑂} 𝑥 ∈ {∅, 𝑂} ↔ ∀𝑥 ∈ ({∅, {∅}} ∪ {{𝑂}, {∅, 𝑂}}) 𝑥 ∈ {∅, 𝑂})
5754, 56sylibr 224 . . . 4 (𝑂𝑉 → ∀𝑥 ∈ 𝒫 {∅, 𝑂} 𝑥 ∈ {∅, 𝑂})
58 ax-1 6 . . . . 5 ( 𝑥 ∈ {∅, 𝑂} → (𝑥 ≼ ω → 𝑥 ∈ {∅, 𝑂}))
5958ralimi 3082 . . . 4 (∀𝑥 ∈ 𝒫 {∅, 𝑂} 𝑥 ∈ {∅, 𝑂} → ∀𝑥 ∈ 𝒫 {∅, 𝑂} (𝑥 ≼ ω → 𝑥 ∈ {∅, 𝑂}))
6057, 59syl 17 . . 3 (𝑂𝑉 → ∀𝑥 ∈ 𝒫 {∅, 𝑂} (𝑥 ≼ ω → 𝑥 ∈ {∅, 𝑂}))
615, 19, 603jca 1122 . 2 (𝑂𝑉 → (𝑂 ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ {∅, 𝑂} (𝑂𝑥) ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ 𝒫 {∅, 𝑂} (𝑥 ≼ ω → 𝑥 ∈ {∅, 𝑂})))
62 issiga 30475 . . 3 ({∅, 𝑂} ∈ V → ({∅, 𝑂} ∈ (sigAlgebra‘𝑂) ↔ ({∅, 𝑂} ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ {∅, 𝑂} (𝑂𝑥) ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ 𝒫 {∅, 𝑂} (𝑥 ≼ ω → 𝑥 ∈ {∅, 𝑂})))))
6344, 62ax-mp 5 . 2 ({∅, 𝑂} ∈ (sigAlgebra‘𝑂) ↔ ({∅, 𝑂} ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ {∅, 𝑂} (𝑂𝑥) ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ 𝒫 {∅, 𝑂} (𝑥 ≼ ω → 𝑥 ∈ {∅, 𝑂}))))
644, 61, 63sylanbrc 701 1 (𝑂𝑉 → {∅, 𝑂} ∈ (sigAlgebra‘𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1624  wcel 2131  wral 3042  Vcvv 3332  cdif 3704  cun 3705  wss 3707  c0 4050  𝒫 cpw 4294  {csn 4313  {cpr 4315   cuni 4580   class class class wbr 4796  cfv 6041  ωcom 7222  cdom 8111  sigAlgebracsiga 30471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-iota 6004  df-fun 6043  df-fv 6049  df-siga 30472
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator