Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prsprel Structured version   Visualization version   GIF version

Theorem prsprel 41502
Description: The elements of a pair from the set of all unordered pairs over a given set 𝑉 are elements of the set 𝑉. (Contributed by AV, 22-Nov-2021.)
Assertion
Ref Expression
prsprel (({𝑋, 𝑌} ∈ (Pairs‘𝑉) ∧ (𝑋𝑈𝑌𝑊)) → (𝑋𝑉𝑌𝑉))

Proof of Theorem prsprel
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sprel 41499 . . 3 ({𝑋, 𝑌} ∈ (Pairs‘𝑉) → ∃𝑎𝑉𝑏𝑉 {𝑋, 𝑌} = {𝑎, 𝑏})
2 preq12bg 4377 . . . . . . 7 (((𝑋𝑈𝑌𝑊) ∧ (𝑎𝑉𝑏𝑉)) → ({𝑋, 𝑌} = {𝑎, 𝑏} ↔ ((𝑋 = 𝑎𝑌 = 𝑏) ∨ (𝑋 = 𝑏𝑌 = 𝑎))))
3 eleq1 2687 . . . . . . . . . . . . 13 (𝑎 = 𝑋 → (𝑎𝑉𝑋𝑉))
43eqcoms 2628 . . . . . . . . . . . 12 (𝑋 = 𝑎 → (𝑎𝑉𝑋𝑉))
5 eleq1 2687 . . . . . . . . . . . . 13 (𝑏 = 𝑌 → (𝑏𝑉𝑌𝑉))
65eqcoms 2628 . . . . . . . . . . . 12 (𝑌 = 𝑏 → (𝑏𝑉𝑌𝑉))
74, 6bi2anan9 916 . . . . . . . . . . 11 ((𝑋 = 𝑎𝑌 = 𝑏) → ((𝑎𝑉𝑏𝑉) ↔ (𝑋𝑉𝑌𝑉)))
87biimpd 219 . . . . . . . . . 10 ((𝑋 = 𝑎𝑌 = 𝑏) → ((𝑎𝑉𝑏𝑉) → (𝑋𝑉𝑌𝑉)))
9 eleq1 2687 . . . . . . . . . . . . . 14 (𝑏 = 𝑋 → (𝑏𝑉𝑋𝑉))
109eqcoms 2628 . . . . . . . . . . . . 13 (𝑋 = 𝑏 → (𝑏𝑉𝑋𝑉))
11 eleq1 2687 . . . . . . . . . . . . . 14 (𝑎 = 𝑌 → (𝑎𝑉𝑌𝑉))
1211eqcoms 2628 . . . . . . . . . . . . 13 (𝑌 = 𝑎 → (𝑎𝑉𝑌𝑉))
1310, 12bi2anan9 916 . . . . . . . . . . . 12 ((𝑋 = 𝑏𝑌 = 𝑎) → ((𝑏𝑉𝑎𝑉) ↔ (𝑋𝑉𝑌𝑉)))
1413biimpd 219 . . . . . . . . . . 11 ((𝑋 = 𝑏𝑌 = 𝑎) → ((𝑏𝑉𝑎𝑉) → (𝑋𝑉𝑌𝑉)))
1514ancomsd 470 . . . . . . . . . 10 ((𝑋 = 𝑏𝑌 = 𝑎) → ((𝑎𝑉𝑏𝑉) → (𝑋𝑉𝑌𝑉)))
168, 15jaoi 394 . . . . . . . . 9 (((𝑋 = 𝑎𝑌 = 𝑏) ∨ (𝑋 = 𝑏𝑌 = 𝑎)) → ((𝑎𝑉𝑏𝑉) → (𝑋𝑉𝑌𝑉)))
1716com12 32 . . . . . . . 8 ((𝑎𝑉𝑏𝑉) → (((𝑋 = 𝑎𝑌 = 𝑏) ∨ (𝑋 = 𝑏𝑌 = 𝑎)) → (𝑋𝑉𝑌𝑉)))
1817adantl 482 . . . . . . 7 (((𝑋𝑈𝑌𝑊) ∧ (𝑎𝑉𝑏𝑉)) → (((𝑋 = 𝑎𝑌 = 𝑏) ∨ (𝑋 = 𝑏𝑌 = 𝑎)) → (𝑋𝑉𝑌𝑉)))
192, 18sylbid 230 . . . . . 6 (((𝑋𝑈𝑌𝑊) ∧ (𝑎𝑉𝑏𝑉)) → ({𝑋, 𝑌} = {𝑎, 𝑏} → (𝑋𝑉𝑌𝑉)))
2019expcom 451 . . . . 5 ((𝑎𝑉𝑏𝑉) → ((𝑋𝑈𝑌𝑊) → ({𝑋, 𝑌} = {𝑎, 𝑏} → (𝑋𝑉𝑌𝑉))))
2120com23 86 . . . 4 ((𝑎𝑉𝑏𝑉) → ({𝑋, 𝑌} = {𝑎, 𝑏} → ((𝑋𝑈𝑌𝑊) → (𝑋𝑉𝑌𝑉))))
2221rexlimivv 3032 . . 3 (∃𝑎𝑉𝑏𝑉 {𝑋, 𝑌} = {𝑎, 𝑏} → ((𝑋𝑈𝑌𝑊) → (𝑋𝑉𝑌𝑉)))
231, 22syl 17 . 2 ({𝑋, 𝑌} ∈ (Pairs‘𝑉) → ((𝑋𝑈𝑌𝑊) → (𝑋𝑉𝑌𝑉)))
2423imp 445 1 (({𝑋, 𝑌} ∈ (Pairs‘𝑉) ∧ (𝑋𝑈𝑌𝑊)) → (𝑋𝑉𝑌𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1481  wcel 1988  wrex 2910  {cpr 4170  cfv 5876  Pairscspr 41492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-spr 41493
This theorem is referenced by:  prsssprel  41503  sprsymrelfolem2  41508
  Copyright terms: Public domain W3C validator