MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prsrlem1 Structured version   Visualization version   GIF version

Theorem prsrlem1 10497
Description: Decomposing signed reals into positive reals. Lemma for addsrpr 10500 and mulsrpr 10501. (Contributed by Jim Kingdon, 30-Dec-2019.)
Assertion
Ref Expression
prsrlem1 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ((((𝑤P𝑣P) ∧ (𝑠P𝑓P)) ∧ ((𝑢P𝑡P) ∧ (𝑔PP))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ) = (𝑡 +P 𝑔))))
Distinct variable group:   𝑓,𝑔,,𝑠,𝑡,𝑢,𝑣,𝑤
Allowed substitution hints:   𝐴(𝑤,𝑣,𝑢,𝑡,𝑓,𝑔,,𝑠)   𝐵(𝑤,𝑣,𝑢,𝑡,𝑓,𝑔,,𝑠)

Proof of Theorem prsrlem1
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enrer 10488 . . . . . 6 ~R Er (P × P)
2 erdm 8302 . . . . . 6 ( ~R Er (P × P) → dom ~R = (P × P))
31, 2ax-mp 5 . . . . 5 dom ~R = (P × P)
4 simprll 777 . . . . . 6 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → 𝐴 = [⟨𝑤, 𝑣⟩] ~R )
5 simpll 765 . . . . . 6 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → 𝐴 ∈ ((P × P) / ~R ))
64, 5eqeltrrd 2917 . . . . 5 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → [⟨𝑤, 𝑣⟩] ~R ∈ ((P × P) / ~R ))
7 ecelqsdm 8370 . . . . 5 ((dom ~R = (P × P) ∧ [⟨𝑤, 𝑣⟩] ~R ∈ ((P × P) / ~R )) → ⟨𝑤, 𝑣⟩ ∈ (P × P))
83, 6, 7sylancr 589 . . . 4 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ⟨𝑤, 𝑣⟩ ∈ (P × P))
9 opelxp 5594 . . . 4 (⟨𝑤, 𝑣⟩ ∈ (P × P) ↔ (𝑤P𝑣P))
108, 9sylib 220 . . 3 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (𝑤P𝑣P))
11 simprrl 779 . . . . . 6 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → 𝐴 = [⟨𝑠, 𝑓⟩] ~R )
1211, 5eqeltrrd 2917 . . . . 5 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → [⟨𝑠, 𝑓⟩] ~R ∈ ((P × P) / ~R ))
13 ecelqsdm 8370 . . . . 5 ((dom ~R = (P × P) ∧ [⟨𝑠, 𝑓⟩] ~R ∈ ((P × P) / ~R )) → ⟨𝑠, 𝑓⟩ ∈ (P × P))
143, 12, 13sylancr 589 . . . 4 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ⟨𝑠, 𝑓⟩ ∈ (P × P))
15 opelxp 5594 . . . 4 (⟨𝑠, 𝑓⟩ ∈ (P × P) ↔ (𝑠P𝑓P))
1614, 15sylib 220 . . 3 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (𝑠P𝑓P))
1710, 16jca 514 . 2 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ((𝑤P𝑣P) ∧ (𝑠P𝑓P)))
18 simprlr 778 . . . . . 6 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → 𝐵 = [⟨𝑢, 𝑡⟩] ~R )
19 simplr 767 . . . . . 6 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → 𝐵 ∈ ((P × P) / ~R ))
2018, 19eqeltrrd 2917 . . . . 5 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → [⟨𝑢, 𝑡⟩] ~R ∈ ((P × P) / ~R ))
21 ecelqsdm 8370 . . . . 5 ((dom ~R = (P × P) ∧ [⟨𝑢, 𝑡⟩] ~R ∈ ((P × P) / ~R )) → ⟨𝑢, 𝑡⟩ ∈ (P × P))
223, 20, 21sylancr 589 . . . 4 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ⟨𝑢, 𝑡⟩ ∈ (P × P))
23 opelxp 5594 . . . 4 (⟨𝑢, 𝑡⟩ ∈ (P × P) ↔ (𝑢P𝑡P))
2422, 23sylib 220 . . 3 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (𝑢P𝑡P))
25 simprrr 780 . . . . . 6 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → 𝐵 = [⟨𝑔, ⟩] ~R )
2625, 19eqeltrrd 2917 . . . . 5 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → [⟨𝑔, ⟩] ~R ∈ ((P × P) / ~R ))
27 ecelqsdm 8370 . . . . 5 ((dom ~R = (P × P) ∧ [⟨𝑔, ⟩] ~R ∈ ((P × P) / ~R )) → ⟨𝑔, ⟩ ∈ (P × P))
283, 26, 27sylancr 589 . . . 4 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ⟨𝑔, ⟩ ∈ (P × P))
29 opelxp 5594 . . . 4 (⟨𝑔, ⟩ ∈ (P × P) ↔ (𝑔PP))
3028, 29sylib 220 . . 3 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (𝑔PP))
3124, 30jca 514 . 2 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ((𝑢P𝑡P) ∧ (𝑔PP)))
324, 11eqtr3d 2861 . . . . 5 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → [⟨𝑤, 𝑣⟩] ~R = [⟨𝑠, 𝑓⟩] ~R )
331a1i 11 . . . . . 6 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ~R Er (P × P))
3433, 8erth 8341 . . . . 5 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (⟨𝑤, 𝑣⟩ ~R𝑠, 𝑓⟩ ↔ [⟨𝑤, 𝑣⟩] ~R = [⟨𝑠, 𝑓⟩] ~R ))
3532, 34mpbird 259 . . . 4 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ⟨𝑤, 𝑣⟩ ~R𝑠, 𝑓⟩)
36 df-enr 10480 . . . . . 6 ~R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑦 = ⟨𝑐, 𝑑⟩) ∧ (𝑎 +P 𝑑) = (𝑏 +P 𝑐)))}
3736ecopoveq 8401 . . . . 5 (((𝑤P𝑣P) ∧ (𝑠P𝑓P)) → (⟨𝑤, 𝑣⟩ ~R𝑠, 𝑓⟩ ↔ (𝑤 +P 𝑓) = (𝑣 +P 𝑠)))
3810, 16, 37syl2anc 586 . . . 4 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (⟨𝑤, 𝑣⟩ ~R𝑠, 𝑓⟩ ↔ (𝑤 +P 𝑓) = (𝑣 +P 𝑠)))
3935, 38mpbid 234 . . 3 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (𝑤 +P 𝑓) = (𝑣 +P 𝑠))
4018, 25eqtr3d 2861 . . . . 5 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → [⟨𝑢, 𝑡⟩] ~R = [⟨𝑔, ⟩] ~R )
4133, 22erth 8341 . . . . 5 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (⟨𝑢, 𝑡⟩ ~R𝑔, ⟩ ↔ [⟨𝑢, 𝑡⟩] ~R = [⟨𝑔, ⟩] ~R ))
4240, 41mpbird 259 . . . 4 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ⟨𝑢, 𝑡⟩ ~R𝑔, ⟩)
4336ecopoveq 8401 . . . . 5 (((𝑢P𝑡P) ∧ (𝑔PP)) → (⟨𝑢, 𝑡⟩ ~R𝑔, ⟩ ↔ (𝑢 +P ) = (𝑡 +P 𝑔)))
4424, 30, 43syl2anc 586 . . . 4 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (⟨𝑢, 𝑡⟩ ~R𝑔, ⟩ ↔ (𝑢 +P ) = (𝑡 +P 𝑔)))
4542, 44mpbid 234 . . 3 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → (𝑢 +P ) = (𝑡 +P 𝑔))
4639, 45jca 514 . 2 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ) = (𝑡 +P 𝑔)))
4717, 31, 46jca31 517 1 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ((((𝑤P𝑣P) ∧ (𝑠P𝑓P)) ∧ ((𝑢P𝑡P) ∧ (𝑔PP))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ) = (𝑡 +P 𝑔))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  cop 4576   class class class wbr 5069   × cxp 5556  dom cdm 5558  (class class class)co 7159   Er wer 8289  [cec 8290   / cqs 8291  Pcnp 10284   +P cpp 10286   ~R cer 10289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-omul 8110  df-er 8292  df-ec 8294  df-qs 8298  df-ni 10297  df-pli 10298  df-mi 10299  df-lti 10300  df-plpq 10333  df-mpq 10334  df-ltpq 10335  df-enq 10336  df-nq 10337  df-erq 10338  df-plq 10339  df-mq 10340  df-1nq 10341  df-rq 10342  df-ltnq 10343  df-np 10406  df-plp 10408  df-ltp 10410  df-enr 10480
This theorem is referenced by:  addsrmo  10498  mulsrmo  10499
  Copyright terms: Public domain W3C validator