![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prsssdm | Structured version Visualization version GIF version |
Description: Domain of a subpreset relation. (Contributed by Thierry Arnoux, 12-Sep-2018.) |
Ref | Expression |
---|---|
ordtNEW.b | ⊢ 𝐵 = (Base‘𝐾) |
ordtNEW.l | ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) |
Ref | Expression |
---|---|
prsssdm | ⊢ ((𝐾 ∈ Preset ∧ 𝐴 ⊆ 𝐵) → dom ( ≤ ∩ (𝐴 × 𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtNEW.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | ordtNEW.l | . . . 4 ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) | |
3 | 1, 2 | prsss 30090 | . . 3 ⊢ ((𝐾 ∈ Preset ∧ 𝐴 ⊆ 𝐵) → ( ≤ ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴))) |
4 | 3 | dmeqd 5358 | . 2 ⊢ ((𝐾 ∈ Preset ∧ 𝐴 ⊆ 𝐵) → dom ( ≤ ∩ (𝐴 × 𝐴)) = dom ((le‘𝐾) ∩ (𝐴 × 𝐴))) |
5 | 1 | ressprs 29783 | . . . 4 ⊢ ((𝐾 ∈ Preset ∧ 𝐴 ⊆ 𝐵) → (𝐾 ↾s 𝐴) ∈ Preset ) |
6 | eqid 2651 | . . . . 5 ⊢ (Base‘(𝐾 ↾s 𝐴)) = (Base‘(𝐾 ↾s 𝐴)) | |
7 | eqid 2651 | . . . . 5 ⊢ ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) = ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) | |
8 | 6, 7 | prsdm 30088 | . . . 4 ⊢ ((𝐾 ↾s 𝐴) ∈ Preset → dom ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) = (Base‘(𝐾 ↾s 𝐴))) |
9 | 5, 8 | syl 17 | . . 3 ⊢ ((𝐾 ∈ Preset ∧ 𝐴 ⊆ 𝐵) → dom ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) = (Base‘(𝐾 ↾s 𝐴))) |
10 | eqid 2651 | . . . . . . . . 9 ⊢ (𝐾 ↾s 𝐴) = (𝐾 ↾s 𝐴) | |
11 | 10, 1 | ressbas2 15978 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘(𝐾 ↾s 𝐴))) |
12 | fvex 6239 | . . . . . . . 8 ⊢ (Base‘(𝐾 ↾s 𝐴)) ∈ V | |
13 | 11, 12 | syl6eqel 2738 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
14 | eqid 2651 | . . . . . . . 8 ⊢ (le‘𝐾) = (le‘𝐾) | |
15 | 10, 14 | ressle 16106 | . . . . . . 7 ⊢ (𝐴 ∈ V → (le‘𝐾) = (le‘(𝐾 ↾s 𝐴))) |
16 | 13, 15 | syl 17 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (le‘𝐾) = (le‘(𝐾 ↾s 𝐴))) |
17 | 16 | adantl 481 | . . . . 5 ⊢ ((𝐾 ∈ Preset ∧ 𝐴 ⊆ 𝐵) → (le‘𝐾) = (le‘(𝐾 ↾s 𝐴))) |
18 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝐾 ∈ Preset ∧ 𝐴 ⊆ 𝐵) → 𝐴 = (Base‘(𝐾 ↾s 𝐴))) |
19 | 18 | sqxpeqd 5175 | . . . . 5 ⊢ ((𝐾 ∈ Preset ∧ 𝐴 ⊆ 𝐵) → (𝐴 × 𝐴) = ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) |
20 | 17, 19 | ineq12d 3848 | . . . 4 ⊢ ((𝐾 ∈ Preset ∧ 𝐴 ⊆ 𝐵) → ((le‘𝐾) ∩ (𝐴 × 𝐴)) = ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴))))) |
21 | 20 | dmeqd 5358 | . . 3 ⊢ ((𝐾 ∈ Preset ∧ 𝐴 ⊆ 𝐵) → dom ((le‘𝐾) ∩ (𝐴 × 𝐴)) = dom ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴))))) |
22 | 9, 21, 18 | 3eqtr4d 2695 | . 2 ⊢ ((𝐾 ∈ Preset ∧ 𝐴 ⊆ 𝐵) → dom ((le‘𝐾) ∩ (𝐴 × 𝐴)) = 𝐴) |
23 | 4, 22 | eqtrd 2685 | 1 ⊢ ((𝐾 ∈ Preset ∧ 𝐴 ⊆ 𝐵) → dom ( ≤ ∩ (𝐴 × 𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∩ cin 3606 ⊆ wss 3607 × cxp 5141 dom cdm 5143 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 ↾s cress 15905 lecple 15995 Preset cpreset 16973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-dec 11532 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-ple 16008 df-preset 16975 |
This theorem is referenced by: ordtrest2NEWlem 30096 ordtrest2NEW 30097 |
Copyright terms: Public domain | W3C validator |