MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prunioo Structured version   Visualization version   GIF version

Theorem prunioo 12243
Description: The closure of an open real interval. (Contributed by Paul Chapman, 15-Mar-2008.) (Proof shortened by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
prunioo ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))

Proof of Theorem prunioo
StepHypRef Expression
1 simp3 1061 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴𝐵)
2 xrleloe 11921 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
323adant3 1079 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
4 df-pr 4151 . . . . . . . . . . 11 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
54uneq2i 3742 . . . . . . . . . 10 ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = ((𝐴(,)𝐵) ∪ ({𝐴} ∪ {𝐵}))
6 unass 3748 . . . . . . . . . 10 (((𝐴(,)𝐵) ∪ {𝐴}) ∪ {𝐵}) = ((𝐴(,)𝐵) ∪ ({𝐴} ∪ {𝐵}))
75, 6eqtr4i 2646 . . . . . . . . 9 ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (((𝐴(,)𝐵) ∪ {𝐴}) ∪ {𝐵})
8 uncom 3735 . . . . . . . . . . 11 ((𝐴(,)𝐵) ∪ {𝐴}) = ({𝐴} ∪ (𝐴(,)𝐵))
9 snunioo 12240 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
108, 9syl5eq 2667 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
1110uneq1d 3744 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (((𝐴(,)𝐵) ∪ {𝐴}) ∪ {𝐵}) = ((𝐴[,)𝐵) ∪ {𝐵}))
127, 11syl5eq 2667 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = ((𝐴[,)𝐵) ∪ {𝐵}))
13123expa 1262 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = ((𝐴[,)𝐵) ∪ {𝐵}))
14133adantl3 1217 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = ((𝐴[,)𝐵) ∪ {𝐵}))
15 snunico 12241 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴[,)𝐵) ∪ {𝐵}) = (𝐴[,]𝐵))
1615adantr 481 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐴 < 𝐵) → ((𝐴[,)𝐵) ∪ {𝐵}) = (𝐴[,]𝐵))
1714, 16eqtrd 2655 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
1817ex 450 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴 < 𝐵 → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)))
19 iccid 12162 . . . . . . 7 (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
20193ad2ant1 1080 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴[,]𝐴) = {𝐴})
2120eqcomd 2627 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → {𝐴} = (𝐴[,]𝐴))
22 uncom 3735 . . . . . . . 8 (∅ ∪ {𝐴}) = ({𝐴} ∪ ∅)
23 un0 3939 . . . . . . . 8 ({𝐴} ∪ ∅) = {𝐴}
2422, 23eqtri 2643 . . . . . . 7 (∅ ∪ {𝐴}) = {𝐴}
25 iooid 12145 . . . . . . . . 9 (𝐴(,)𝐴) = ∅
26 oveq2 6612 . . . . . . . . 9 (𝐴 = 𝐵 → (𝐴(,)𝐴) = (𝐴(,)𝐵))
2725, 26syl5eqr 2669 . . . . . . . 8 (𝐴 = 𝐵 → ∅ = (𝐴(,)𝐵))
28 dfsn2 4161 . . . . . . . . 9 {𝐴} = {𝐴, 𝐴}
29 preq2 4239 . . . . . . . . 9 (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵})
3028, 29syl5eq 2667 . . . . . . . 8 (𝐴 = 𝐵 → {𝐴} = {𝐴, 𝐵})
3127, 30uneq12d 3746 . . . . . . 7 (𝐴 = 𝐵 → (∅ ∪ {𝐴}) = ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}))
3224, 31syl5eqr 2669 . . . . . 6 (𝐴 = 𝐵 → {𝐴} = ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}))
33 oveq2 6612 . . . . . 6 (𝐴 = 𝐵 → (𝐴[,]𝐴) = (𝐴[,]𝐵))
3432, 33eqeq12d 2636 . . . . 5 (𝐴 = 𝐵 → ({𝐴} = (𝐴[,]𝐴) ↔ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)))
3521, 34syl5ibcom 235 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴 = 𝐵 → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)))
3618, 35jaod 395 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴 < 𝐵𝐴 = 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)))
373, 36sylbid 230 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴𝐵 → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)))
381, 37mpd 15 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  cun 3553  c0 3891  {csn 4148  {cpr 4150   class class class wbr 4613  (class class class)co 6604  *cxr 10017   < clt 10018  cle 10019  (,)cioo 12117  [,)cico 12119  [,]cicc 12120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-ioo 12121  df-ico 12123  df-icc 12124
This theorem is referenced by:  iccntr  22532  ovolioo  23243  uniiccdif  23252  itgioo  23488  rollelem  23656  dvivthlem1  23675  reasinsin  24523  scvxcvx  24612  eliccioo  29424  iccdifioo  39152  iccdifprioo  39153  cncfiooicclem1  39410  fourierdlem102  39732  fourierdlem114  39744
  Copyright terms: Public domain W3C validator