MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prunioo Structured version   Visualization version   GIF version

Theorem prunioo 12870
Description: The closure of an open real interval. (Contributed by Paul Chapman, 15-Mar-2008.) (Proof shortened by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
prunioo ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))

Proof of Theorem prunioo
StepHypRef Expression
1 simp3 1134 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴𝐵)
2 xrleloe 12540 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
323adant3 1128 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
4 df-pr 4573 . . . . . . . . . . 11 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
54uneq2i 4139 . . . . . . . . . 10 ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = ((𝐴(,)𝐵) ∪ ({𝐴} ∪ {𝐵}))
6 unass 4145 . . . . . . . . . 10 (((𝐴(,)𝐵) ∪ {𝐴}) ∪ {𝐵}) = ((𝐴(,)𝐵) ∪ ({𝐴} ∪ {𝐵}))
75, 6eqtr4i 2850 . . . . . . . . 9 ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (((𝐴(,)𝐵) ∪ {𝐴}) ∪ {𝐵})
8 uncom 4132 . . . . . . . . . . 11 ((𝐴(,)𝐵) ∪ {𝐴}) = ({𝐴} ∪ (𝐴(,)𝐵))
9 snunioo 12867 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
108, 9syl5eq 2871 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
1110uneq1d 4141 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (((𝐴(,)𝐵) ∪ {𝐴}) ∪ {𝐵}) = ((𝐴[,)𝐵) ∪ {𝐵}))
127, 11syl5eq 2871 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = ((𝐴[,)𝐵) ∪ {𝐵}))
13123expa 1114 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = ((𝐴[,)𝐵) ∪ {𝐵}))
14133adantl3 1164 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = ((𝐴[,)𝐵) ∪ {𝐵}))
15 snunico 12868 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴[,)𝐵) ∪ {𝐵}) = (𝐴[,]𝐵))
1615adantr 483 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐴 < 𝐵) → ((𝐴[,)𝐵) ∪ {𝐵}) = (𝐴[,]𝐵))
1714, 16eqtrd 2859 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
1817ex 415 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴 < 𝐵 → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)))
19 iccid 12786 . . . . . . 7 (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
20193ad2ant1 1129 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴[,]𝐴) = {𝐴})
2120eqcomd 2830 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → {𝐴} = (𝐴[,]𝐴))
22 uncom 4132 . . . . . . . 8 (∅ ∪ {𝐴}) = ({𝐴} ∪ ∅)
23 un0 4347 . . . . . . . 8 ({𝐴} ∪ ∅) = {𝐴}
2422, 23eqtri 2847 . . . . . . 7 (∅ ∪ {𝐴}) = {𝐴}
25 iooid 12769 . . . . . . . . 9 (𝐴(,)𝐴) = ∅
26 oveq2 7167 . . . . . . . . 9 (𝐴 = 𝐵 → (𝐴(,)𝐴) = (𝐴(,)𝐵))
2725, 26syl5eqr 2873 . . . . . . . 8 (𝐴 = 𝐵 → ∅ = (𝐴(,)𝐵))
28 dfsn2 4583 . . . . . . . . 9 {𝐴} = {𝐴, 𝐴}
29 preq2 4673 . . . . . . . . 9 (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵})
3028, 29syl5eq 2871 . . . . . . . 8 (𝐴 = 𝐵 → {𝐴} = {𝐴, 𝐵})
3127, 30uneq12d 4143 . . . . . . 7 (𝐴 = 𝐵 → (∅ ∪ {𝐴}) = ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}))
3224, 31syl5eqr 2873 . . . . . 6 (𝐴 = 𝐵 → {𝐴} = ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}))
33 oveq2 7167 . . . . . 6 (𝐴 = 𝐵 → (𝐴[,]𝐴) = (𝐴[,]𝐵))
3432, 33eqeq12d 2840 . . . . 5 (𝐴 = 𝐵 → ({𝐴} = (𝐴[,]𝐴) ↔ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)))
3521, 34syl5ibcom 247 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴 = 𝐵 → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)))
3618, 35jaod 855 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴 < 𝐵𝐴 = 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)))
373, 36sylbid 242 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴𝐵 → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)))
381, 37mpd 15 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1536  wcel 2113  cun 3937  c0 4294  {csn 4570  {cpr 4572   class class class wbr 5069  (class class class)co 7159  *cxr 10677   < clt 10678  cle 10679  (,)cioo 12741  [,)cico 12743  [,]cicc 12744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-inf 8910  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-ioo 12745  df-ico 12747  df-icc 12748
This theorem is referenced by:  iccntr  23432  ovolioo  24172  uniiccdif  24182  itgioo  24419  rollelem  24589  dvivthlem1  24608  reasinsin  25477  scvxcvx  25566  eliccioo  30611  iccdifioo  41797  iccdifprioo  41798  cncfiooicclem1  42182  fourierdlem102  42500  fourierdlem114  42512
  Copyright terms: Public domain W3C validator