Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ps-2 Structured version   Visualization version   GIF version

Theorem ps-2 33578
Description: Lattice analogue for the projective geometry axiom, "if a line intersects two sides of a triangle at different points then it also intersects the third side." Projective space condition PS2 in [MaedaMaeda] p. 68 and part of Theorem 16.4 in [MaedaMaeda] p. 69. (Contributed by NM, 1-Dec-2011.)
Hypotheses
Ref Expression
ps1.l = (le‘𝐾)
ps1.j = (join‘𝐾)
ps1.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
ps-2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)))
Distinct variable groups:   𝑢,𝐴   𝑢,   𝑢,𝐾   𝑢,   𝑢,𝑃   𝑢,𝑄   𝑢,𝑅   𝑢,𝑆   𝑢,𝑇

Proof of Theorem ps-2
StepHypRef Expression
1 simpl21 1131 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆 = 𝑃) → 𝑃𝐴)
2 simp1 1053 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝐾 ∈ HL)
3 simp21 1086 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑃𝐴)
4 simp23 1088 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑅𝐴)
5 ps1.l . . . . . . . 8 = (le‘𝐾)
6 ps1.j . . . . . . . 8 = (join‘𝐾)
7 ps1.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
85, 6, 7hlatlej1 33475 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → 𝑃 (𝑃 𝑅))
92, 3, 4, 8syl3anc 1317 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑃 (𝑃 𝑅))
109adantr 479 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆 = 𝑃) → 𝑃 (𝑃 𝑅))
11 simp3r 1082 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑇𝐴)
125, 6, 7hlatlej1 33475 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) → 𝑃 (𝑃 𝑇))
132, 3, 11, 12syl3anc 1317 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑃 (𝑃 𝑇))
14 oveq1 6534 . . . . . . . 8 (𝑆 = 𝑃 → (𝑆 𝑇) = (𝑃 𝑇))
1514breq2d 4589 . . . . . . 7 (𝑆 = 𝑃 → (𝑃 (𝑆 𝑇) ↔ 𝑃 (𝑃 𝑇)))
1613, 15syl5ibrcom 235 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑆 = 𝑃𝑃 (𝑆 𝑇)))
1716imp 443 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆 = 𝑃) → 𝑃 (𝑆 𝑇))
18 breq1 4580 . . . . . . 7 (𝑢 = 𝑃 → (𝑢 (𝑃 𝑅) ↔ 𝑃 (𝑃 𝑅)))
19 breq1 4580 . . . . . . 7 (𝑢 = 𝑃 → (𝑢 (𝑆 𝑇) ↔ 𝑃 (𝑆 𝑇)))
2018, 19anbi12d 742 . . . . . 6 (𝑢 = 𝑃 → ((𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)) ↔ (𝑃 (𝑃 𝑅) ∧ 𝑃 (𝑆 𝑇))))
2120rspcev 3281 . . . . 5 ((𝑃𝐴 ∧ (𝑃 (𝑃 𝑅) ∧ 𝑃 (𝑆 𝑇))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)))
221, 10, 17, 21syl12anc 1315 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆 = 𝑃) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)))
2322a1d 25 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆 = 𝑃) → (((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))))
24 hlop 33463 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ HL → 𝐾 ∈ OP)
25243ad2ant1 1074 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝐾 ∈ OP)
26 eqid 2609 . . . . . . . . . . . . . . . . . 18 (Base‘𝐾) = (Base‘𝐾)
27 eqid 2609 . . . . . . . . . . . . . . . . . 18 (0.‘𝐾) = (0.‘𝐾)
2826, 27op0cl 33285 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
2925, 28syl 17 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (0.‘𝐾) ∈ (Base‘𝐾))
3026, 7atbase 33390 . . . . . . . . . . . . . . . . 17 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
313, 30syl 17 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑃 ∈ (Base‘𝐾))
32 eqid 2609 . . . . . . . . . . . . . . . . . 18 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
3327, 32, 7atcvr0 33389 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃)
342, 3, 33syl2anc 690 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃)
35 eqid 2609 . . . . . . . . . . . . . . . . 17 (lt‘𝐾) = (lt‘𝐾)
3626, 35, 32cvrlt 33371 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ (0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑃) → (0.‘𝐾)(lt‘𝐾)𝑃)
372, 29, 31, 34, 36syl31anc 1320 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (0.‘𝐾)(lt‘𝐾)𝑃)
38 hlpos 33466 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ HL → 𝐾 ∈ Poset)
39383ad2ant1 1074 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝐾 ∈ Poset)
40 hllat 33464 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ HL → 𝐾 ∈ Lat)
41403ad2ant1 1074 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝐾 ∈ Lat)
4226, 7atbase 33390 . . . . . . . . . . . . . . . . . 18 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
434, 42syl 17 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑅 ∈ (Base‘𝐾))
4426, 6latjcl 16820 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑃 𝑅) ∈ (Base‘𝐾))
4541, 31, 43, 44syl3anc 1317 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑃 𝑅) ∈ (Base‘𝐾))
4626, 5, 35pltletr 16740 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Poset ∧ ((0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑃 𝑅) ∈ (Base‘𝐾))) → (((0.‘𝐾)(lt‘𝐾)𝑃𝑃 (𝑃 𝑅)) → (0.‘𝐾)(lt‘𝐾)(𝑃 𝑅)))
4739, 29, 31, 45, 46syl13anc 1319 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (((0.‘𝐾)(lt‘𝐾)𝑃𝑃 (𝑃 𝑅)) → (0.‘𝐾)(lt‘𝐾)(𝑃 𝑅)))
4837, 9, 47mp2and 710 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (0.‘𝐾)(lt‘𝐾)(𝑃 𝑅))
4935pltne 16731 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (0.‘𝐾) ∈ (Base‘𝐾) ∧ (𝑃 𝑅) ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)(𝑃 𝑅) → (0.‘𝐾) ≠ (𝑃 𝑅)))
502, 29, 45, 49syl3anc 1317 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((0.‘𝐾)(lt‘𝐾)(𝑃 𝑅) → (0.‘𝐾) ≠ (𝑃 𝑅)))
5148, 50mpd 15 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (0.‘𝐾) ≠ (𝑃 𝑅))
5251necomd 2836 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑃 𝑅) ≠ (0.‘𝐾))
5352adantr 479 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → (𝑃 𝑅) ≠ (0.‘𝐾))
54 hlatl 33461 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
55543ad2ant1 1074 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝐾 ∈ AtLat)
56 simp3l 1081 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑆𝐴)
575, 7atncmp 33413 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ AtLat ∧ 𝑆𝐴𝑃𝐴) → (¬ 𝑆 𝑃𝑆𝑃))
5855, 56, 3, 57syl3anc 1317 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (¬ 𝑆 𝑃𝑆𝑃))
59 simp22 1087 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑄𝐴)
6026, 5, 6, 7hlexch1 33482 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑄𝐴𝑃 ∈ (Base‘𝐾)) ∧ ¬ 𝑆 𝑃) → (𝑆 (𝑃 𝑄) → 𝑄 (𝑃 𝑆)))
61603expia 1258 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑄𝐴𝑃 ∈ (Base‘𝐾))) → (¬ 𝑆 𝑃 → (𝑆 (𝑃 𝑄) → 𝑄 (𝑃 𝑆))))
622, 56, 59, 31, 61syl13anc 1319 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (¬ 𝑆 𝑃 → (𝑆 (𝑃 𝑄) → 𝑄 (𝑃 𝑆))))
6358, 62sylbird 248 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑆𝑃 → (𝑆 (𝑃 𝑄) → 𝑄 (𝑃 𝑆))))
6463imp32 447 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃𝑆 (𝑃 𝑄))) → 𝑄 (𝑃 𝑆))
6526, 7atbase 33390 . . . . . . . . . . . . . . . . . 18 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
6659, 65syl 17 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑄 ∈ (Base‘𝐾))
6726, 7atbase 33390 . . . . . . . . . . . . . . . . . . 19 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
6856, 67syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑆 ∈ (Base‘𝐾))
6926, 6latjcl 16820 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (𝑃 𝑆) ∈ (Base‘𝐾))
7041, 31, 68, 69syl3anc 1317 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑃 𝑆) ∈ (Base‘𝐾))
7126, 5, 6latjlej1 16834 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾))) → (𝑄 (𝑃 𝑆) → (𝑄 𝑅) ((𝑃 𝑆) 𝑅)))
7241, 66, 70, 43, 71syl13anc 1319 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑄 (𝑃 𝑆) → (𝑄 𝑅) ((𝑃 𝑆) 𝑅)))
7372adantr 479 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃𝑆 (𝑃 𝑄))) → (𝑄 (𝑃 𝑆) → (𝑄 𝑅) ((𝑃 𝑆) 𝑅)))
7464, 73mpd 15 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃𝑆 (𝑃 𝑄))) → (𝑄 𝑅) ((𝑃 𝑆) 𝑅))
7574adantrrr 756 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → (𝑄 𝑅) ((𝑃 𝑆) 𝑅))
7626, 7atbase 33390 . . . . . . . . . . . . . . . . . 18 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
7711, 76syl 17 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑇 ∈ (Base‘𝐾))
7826, 6latjcl 16820 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑄 𝑅) ∈ (Base‘𝐾))
7941, 66, 43, 78syl3anc 1317 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑄 𝑅) ∈ (Base‘𝐾))
8026, 6latjcl 16820 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑅) ∈ (Base‘𝐾))
8141, 70, 43, 80syl3anc 1317 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((𝑃 𝑆) 𝑅) ∈ (Base‘𝐾))
8226, 5lattr 16825 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ (𝑇 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ ((𝑃 𝑆) 𝑅) ∈ (Base‘𝐾))) → ((𝑇 (𝑄 𝑅) ∧ (𝑄 𝑅) ((𝑃 𝑆) 𝑅)) → 𝑇 ((𝑃 𝑆) 𝑅)))
8341, 77, 79, 81, 82syl13anc 1319 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((𝑇 (𝑄 𝑅) ∧ (𝑄 𝑅) ((𝑃 𝑆) 𝑅)) → 𝑇 ((𝑃 𝑆) 𝑅)))
8483expdimp 451 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑇 (𝑄 𝑅)) → ((𝑄 𝑅) ((𝑃 𝑆) 𝑅) → 𝑇 ((𝑃 𝑆) 𝑅)))
8584adantrl 747 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅))) → ((𝑄 𝑅) ((𝑃 𝑆) 𝑅) → 𝑇 ((𝑃 𝑆) 𝑅)))
8685adantrl 747 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ((𝑄 𝑅) ((𝑃 𝑆) 𝑅) → 𝑇 ((𝑃 𝑆) 𝑅)))
8775, 86mpd 15 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → 𝑇 ((𝑃 𝑆) 𝑅))
886, 7hlatj32 33472 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑅𝐴)) → ((𝑃 𝑆) 𝑅) = ((𝑃 𝑅) 𝑆))
892, 3, 56, 4, 88syl13anc 1319 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((𝑃 𝑆) 𝑅) = ((𝑃 𝑅) 𝑆))
9089breq2d 4589 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑇 ((𝑃 𝑆) 𝑅) ↔ 𝑇 ((𝑃 𝑅) 𝑆)))
9190adantr 479 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → (𝑇 ((𝑃 𝑆) 𝑅) ↔ 𝑇 ((𝑃 𝑅) 𝑆)))
9287, 91mpbid 220 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → 𝑇 ((𝑃 𝑅) 𝑆))
9353, 92jca 552 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ((𝑃 𝑅) ≠ (0.‘𝐾) ∧ 𝑇 ((𝑃 𝑅) 𝑆)))
9493adantrrl 755 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (¬ 𝑃 (𝑄 𝑅) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅))))) → ((𝑃 𝑅) ≠ (0.‘𝐾) ∧ 𝑇 ((𝑃 𝑅) 𝑆)))
9594ex 448 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((𝑆𝑃 ∧ (¬ 𝑃 (𝑄 𝑅) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ((𝑃 𝑅) ≠ (0.‘𝐾) ∧ 𝑇 ((𝑃 𝑅) 𝑆))))
9626, 5, 6, 27, 7cvrat4 33543 . . . . . . . . 9 ((𝐾 ∈ HL ∧ ((𝑃 𝑅) ∈ (Base‘𝐾) ∧ 𝑇𝐴𝑆𝐴)) → (((𝑃 𝑅) ≠ (0.‘𝐾) ∧ 𝑇 ((𝑃 𝑅) 𝑆)) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢))))
972, 45, 11, 56, 96syl13anc 1319 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (((𝑃 𝑅) ≠ (0.‘𝐾) ∧ 𝑇 ((𝑃 𝑅) 𝑆)) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢))))
9895, 97syld 45 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((𝑆𝑃 ∧ (¬ 𝑃 (𝑄 𝑅) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢))))
9998impl 647 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑃) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢)))
10099adantrlr 754 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑃) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢)))
1015, 7atncmp 33413 . . . . . . . . . . . . . . 15 ((𝐾 ∈ AtLat ∧ 𝑇𝐴𝑆𝐴) → (¬ 𝑇 𝑆𝑇𝑆))
10255, 11, 56, 101syl3anc 1317 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (¬ 𝑇 𝑆𝑇𝑆))
103 necom 2834 . . . . . . . . . . . . . 14 (𝑇𝑆𝑆𝑇)
104102, 103syl6bb 274 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (¬ 𝑇 𝑆𝑆𝑇))
105104adantr 479 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) → (¬ 𝑇 𝑆𝑆𝑇))
106 simpl1 1056 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) → 𝐾 ∈ HL)
107 simpl3r 1109 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) → 𝑇𝐴)
108 simpr 475 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) → 𝑢𝐴)
10968adantr 479 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) → 𝑆 ∈ (Base‘𝐾))
11026, 5, 6, 7hlexch1 33482 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑇𝐴𝑢𝐴𝑆 ∈ (Base‘𝐾)) ∧ ¬ 𝑇 𝑆) → (𝑇 (𝑆 𝑢) → 𝑢 (𝑆 𝑇)))
1111103expia 1258 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑇𝐴𝑢𝐴𝑆 ∈ (Base‘𝐾))) → (¬ 𝑇 𝑆 → (𝑇 (𝑆 𝑢) → 𝑢 (𝑆 𝑇))))
112106, 107, 108, 109, 111syl13anc 1319 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) → (¬ 𝑇 𝑆 → (𝑇 (𝑆 𝑢) → 𝑢 (𝑆 𝑇))))
113105, 112sylbird 248 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) → (𝑆𝑇 → (𝑇 (𝑆 𝑢) → 𝑢 (𝑆 𝑇))))
114113imp 443 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) ∧ 𝑆𝑇) → (𝑇 (𝑆 𝑢) → 𝑢 (𝑆 𝑇)))
115114an32s 841 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑇) ∧ 𝑢𝐴) → (𝑇 (𝑆 𝑢) → 𝑢 (𝑆 𝑇)))
116115anim2d 586 . . . . . . . 8 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑇) ∧ 𝑢𝐴) → ((𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢)) → (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))))
117116reximdva 2999 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑇) → (∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢)) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))))
118117ad2ant2rl 780 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑃) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇)) → (∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢)) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))))
119118adantrr 748 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑃) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → (∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢)) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))))
120100, 119mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑃) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)))
121120ex 448 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑃) → (((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))))
12223, 121pm2.61dane 2868 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))))
123122imp 443 1 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  wrex 2896   class class class wbr 4577  cfv 5790  (class class class)co 6527  Basecbs 15641  lecple 15721  Posetcpo 16709  ltcplt 16710  joincjn 16713  0.cp0 16806  Latclat 16814  OPcops 33273  ccvr 33363  Atomscatm 33364  AtLatcal 33365  HLchlt 33451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-preset 16697  df-poset 16715  df-plt 16727  df-lub 16743  df-glb 16744  df-join 16745  df-meet 16746  df-p0 16808  df-lat 16815  df-clat 16877  df-oposet 33277  df-ol 33279  df-oml 33280  df-covers 33367  df-ats 33368  df-atl 33399  df-cvlat 33423  df-hlat 33452
This theorem is referenced by:  ps-2b  33582  paddasslem3  33922
  Copyright terms: Public domain W3C validator