MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psercn Structured version   Visualization version   GIF version

Theorem psercn 25008
Description: An infinite series converges to a continuous function on the open disk of radius 𝑅, where 𝑅 is the radius of convergence of the series. (Contributed by Mario Carneiro, 4-Mar-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercn.m 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
Assertion
Ref Expression
psercn (𝜑𝐹 ∈ (𝑆cn→ℂ))
Distinct variable groups:   𝑗,𝑎,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑦   𝑗,𝐺,𝑟,𝑦   𝑆,𝑎,𝑗,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑗,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem psercn
Dummy variables 𝑘 𝑠 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumex 15038 . . . . . 6 Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗) ∈ V
21rgenw 3150 . . . . 5 𝑦𝑆 Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗) ∈ V
3 pserf.f . . . . . 6 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
43fnmpt 6482 . . . . 5 (∀𝑦𝑆 Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗) ∈ V → 𝐹 Fn 𝑆)
52, 4mp1i 13 . . . 4 (𝜑𝐹 Fn 𝑆)
6 psercn.s . . . . . . . . . . 11 𝑆 = (abs “ (0[,)𝑅))
7 cnvimass 5943 . . . . . . . . . . . 12 (abs “ (0[,)𝑅)) ⊆ dom abs
8 absf 14691 . . . . . . . . . . . . 13 abs:ℂ⟶ℝ
98fdmi 6518 . . . . . . . . . . . 12 dom abs = ℂ
107, 9sseqtri 4002 . . . . . . . . . . 11 (abs “ (0[,)𝑅)) ⊆ ℂ
116, 10eqsstri 4000 . . . . . . . . . 10 𝑆 ⊆ ℂ
1211a1i 11 . . . . . . . . 9 (𝜑𝑆 ⊆ ℂ)
1312sselda 3966 . . . . . . . 8 ((𝜑𝑎𝑆) → 𝑎 ∈ ℂ)
14 0cn 10627 . . . . . . . . . . 11 0 ∈ ℂ
15 eqid 2821 . . . . . . . . . . . 12 (abs ∘ − ) = (abs ∘ − )
1615cnmetdval 23373 . . . . . . . . . . 11 ((0 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (0(abs ∘ − )𝑎) = (abs‘(0 − 𝑎)))
1714, 13, 16sylancr 589 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (0(abs ∘ − )𝑎) = (abs‘(0 − 𝑎)))
18 abssub 14680 . . . . . . . . . . 11 ((0 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (abs‘(0 − 𝑎)) = (abs‘(𝑎 − 0)))
1914, 13, 18sylancr 589 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘(0 − 𝑎)) = (abs‘(𝑎 − 0)))
2013subid1d 10980 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (𝑎 − 0) = 𝑎)
2120fveq2d 6668 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘(𝑎 − 0)) = (abs‘𝑎))
2217, 19, 213eqtrd 2860 . . . . . . . . 9 ((𝜑𝑎𝑆) → (0(abs ∘ − )𝑎) = (abs‘𝑎))
23 breq2 5062 . . . . . . . . . . 11 ((((abs‘𝑎) + 𝑅) / 2) = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → ((abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2) ↔ (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))))
24 breq2 5062 . . . . . . . . . . 11 (((abs‘𝑎) + 1) = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → ((abs‘𝑎) < ((abs‘𝑎) + 1) ↔ (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))))
25 simpr 487 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎𝑆) → 𝑎𝑆)
2625, 6eleqtrdi 2923 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → 𝑎 ∈ (abs “ (0[,)𝑅)))
27 ffn 6508 . . . . . . . . . . . . . . . . . 18 (abs:ℂ⟶ℝ → abs Fn ℂ)
28 elpreima 6822 . . . . . . . . . . . . . . . . . 18 (abs Fn ℂ → (𝑎 ∈ (abs “ (0[,)𝑅)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅))))
298, 27, 28mp2b 10 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (abs “ (0[,)𝑅)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅)))
3026, 29sylib 220 . . . . . . . . . . . . . . . 16 ((𝜑𝑎𝑆) → (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅)))
3130simprd 498 . . . . . . . . . . . . . . 15 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ (0[,)𝑅))
32 0re 10637 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
33 iccssxr 12813 . . . . . . . . . . . . . . . . 17 (0[,]+∞) ⊆ ℝ*
34 pserf.g . . . . . . . . . . . . . . . . . . 19 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
35 pserf.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴:ℕ0⟶ℂ)
36 pserf.r . . . . . . . . . . . . . . . . . . 19 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
3734, 35, 36radcnvcl 24999 . . . . . . . . . . . . . . . . . 18 (𝜑𝑅 ∈ (0[,]+∞))
3837adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → 𝑅 ∈ (0[,]+∞))
3933, 38sseldi 3964 . . . . . . . . . . . . . . . 16 ((𝜑𝑎𝑆) → 𝑅 ∈ ℝ*)
40 elico2 12794 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝑎) ∈ (0[,)𝑅) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑅)))
4132, 39, 40sylancr 589 . . . . . . . . . . . . . . 15 ((𝜑𝑎𝑆) → ((abs‘𝑎) ∈ (0[,)𝑅) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑅)))
4231, 41mpbid 234 . . . . . . . . . . . . . 14 ((𝜑𝑎𝑆) → ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑅))
4342simp3d 1140 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑅)
4443adantr 483 . . . . . . . . . . . 12 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → (abs‘𝑎) < 𝑅)
4513abscld 14790 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ ℝ)
46 avglt1 11869 . . . . . . . . . . . . 13 (((abs‘𝑎) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2)))
4745, 46sylan 582 . . . . . . . . . . . 12 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2)))
4844, 47mpbid 234 . . . . . . . . . . 11 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2))
4945ltp1d 11564 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → (abs‘𝑎) < ((abs‘𝑎) + 1))
5049adantr 483 . . . . . . . . . . 11 (((𝜑𝑎𝑆) ∧ ¬ 𝑅 ∈ ℝ) → (abs‘𝑎) < ((abs‘𝑎) + 1))
5123, 24, 48, 50ifbothda 4503 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)))
52 psercn.m . . . . . . . . . 10 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
5351, 52breqtrrdi 5100 . . . . . . . . 9 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑀)
5422, 53eqbrtrd 5080 . . . . . . . 8 ((𝜑𝑎𝑆) → (0(abs ∘ − )𝑎) < 𝑀)
55 cnxmet 23375 . . . . . . . . 9 (abs ∘ − ) ∈ (∞Met‘ℂ)
5634, 3, 35, 36, 6, 52psercnlem1 25007 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
5756simp1d 1138 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ+)
5857rpxrd 12426 . . . . . . . . 9 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ*)
59 elbl 22992 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑀 ∈ ℝ*) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ↔ (𝑎 ∈ ℂ ∧ (0(abs ∘ − )𝑎) < 𝑀)))
6055, 14, 58, 59mp3an12i 1461 . . . . . . . 8 ((𝜑𝑎𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ↔ (𝑎 ∈ ℂ ∧ (0(abs ∘ − )𝑎) < 𝑀)))
6113, 54, 60mpbir2and 711 . . . . . . 7 ((𝜑𝑎𝑆) → 𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀))
6261fvresd 6684 . . . . . 6 ((𝜑𝑎𝑆) → ((𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀))‘𝑎) = (𝐹𝑎))
633reseq1i 5843 . . . . . . . . . 10 (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) = ((𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)) ↾ (0(ball‘(abs ∘ − ))𝑀))
6434, 3, 35, 36, 6, 56psercnlem2 25006 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (abs “ (0[,]𝑀)) ∧ (abs “ (0[,]𝑀)) ⊆ 𝑆))
6564simp2d 1139 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) ⊆ (abs “ (0[,]𝑀)))
6664simp3d 1140 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → (abs “ (0[,]𝑀)) ⊆ 𝑆)
6765, 66sstrd 3976 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) ⊆ 𝑆)
6867resmptd 5902 . . . . . . . . . 10 ((𝜑𝑎𝑆) → ((𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)) ↾ (0(ball‘(abs ∘ − ))𝑀)) = (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)))
6963, 68syl5eq 2868 . . . . . . . . 9 ((𝜑𝑎𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) = (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)))
70 eqid 2821 . . . . . . . . . 10 (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)) = (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
7135adantr 483 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝐴:ℕ0⟶ℂ)
72 fveq2 6664 . . . . . . . . . . . . . . 15 (𝑘 = 𝑦 → (𝐺𝑘) = (𝐺𝑦))
7372seqeq3d 13371 . . . . . . . . . . . . . 14 (𝑘 = 𝑦 → seq0( + , (𝐺𝑘)) = seq0( + , (𝐺𝑦)))
7473fveq1d 6666 . . . . . . . . . . . . 13 (𝑘 = 𝑦 → (seq0( + , (𝐺𝑘))‘𝑠) = (seq0( + , (𝐺𝑦))‘𝑠))
7574cbvmptv 5161 . . . . . . . . . . . 12 (𝑘 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑘))‘𝑠)) = (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑦))‘𝑠))
76 fveq2 6664 . . . . . . . . . . . . 13 (𝑠 = 𝑖 → (seq0( + , (𝐺𝑦))‘𝑠) = (seq0( + , (𝐺𝑦))‘𝑖))
7776mpteq2dv 5154 . . . . . . . . . . . 12 (𝑠 = 𝑖 → (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑦))‘𝑠)) = (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
7875, 77syl5eq 2868 . . . . . . . . . . 11 (𝑠 = 𝑖 → (𝑘 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑘))‘𝑠)) = (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
7978cbvmptv 5161 . . . . . . . . . 10 (𝑠 ∈ ℕ0 ↦ (𝑘 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑘))‘𝑠))) = (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
8057rpred 12425 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ)
8156simp3d 1140 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝑀 < 𝑅)
8234, 70, 71, 36, 79, 80, 81, 65psercn2 25005 . . . . . . . . 9 ((𝜑𝑎𝑆) → (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)) ∈ ((0(ball‘(abs ∘ − ))𝑀)–cn→ℂ))
8369, 82eqeltrd 2913 . . . . . . . 8 ((𝜑𝑎𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ ((0(ball‘(abs ∘ − ))𝑀)–cn→ℂ))
84 cncff 23495 . . . . . . . 8 ((𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ ((0(ball‘(abs ∘ − ))𝑀)–cn→ℂ) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)):(0(ball‘(abs ∘ − ))𝑀)⟶ℂ)
8583, 84syl 17 . . . . . . 7 ((𝜑𝑎𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)):(0(ball‘(abs ∘ − ))𝑀)⟶ℂ)
8685, 61ffvelrnd 6846 . . . . . 6 ((𝜑𝑎𝑆) → ((𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀))‘𝑎) ∈ ℂ)
8762, 86eqeltrrd 2914 . . . . 5 ((𝜑𝑎𝑆) → (𝐹𝑎) ∈ ℂ)
8887ralrimiva 3182 . . . 4 (𝜑 → ∀𝑎𝑆 (𝐹𝑎) ∈ ℂ)
89 ffnfv 6876 . . . 4 (𝐹:𝑆⟶ℂ ↔ (𝐹 Fn 𝑆 ∧ ∀𝑎𝑆 (𝐹𝑎) ∈ ℂ))
905, 88, 89sylanbrc 585 . . 3 (𝜑𝐹:𝑆⟶ℂ)
9167, 11sstrdi 3978 . . . . . . . . 9 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) ⊆ ℂ)
92 ssid 3988 . . . . . . . . 9 ℂ ⊆ ℂ
93 eqid 2821 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
94 eqid 2821 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) = ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀))
9593cnfldtopon 23385 . . . . . . . . . . 11 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
9695toponrestid 21523 . . . . . . . . . 10 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
9793, 94, 96cncfcn 23511 . . . . . . . . 9 (((0(ball‘(abs ∘ − ))𝑀) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((0(ball‘(abs ∘ − ))𝑀)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) Cn (TopOpen‘ℂfld)))
9891, 92, 97sylancl 588 . . . . . . . 8 ((𝜑𝑎𝑆) → ((0(ball‘(abs ∘ − ))𝑀)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) Cn (TopOpen‘ℂfld)))
9983, 98eleqtrd 2915 . . . . . . 7 ((𝜑𝑎𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ (((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) Cn (TopOpen‘ℂfld)))
10093cnfldtop 23386 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ Top
101 unicntop 23388 . . . . . . . . . 10 ℂ = (TopOpen‘ℂfld)
102101restuni 21764 . . . . . . . . 9 (((TopOpen‘ℂfld) ∈ Top ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ ℂ) → (0(ball‘(abs ∘ − ))𝑀) = ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)))
103100, 91, 102sylancr 589 . . . . . . . 8 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) = ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)))
10461, 103eleqtrd 2915 . . . . . . 7 ((𝜑𝑎𝑆) → 𝑎 ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)))
105 eqid 2821 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) = ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀))
106105cncnpi 21880 . . . . . . 7 (((𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ (((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) Cn (TopOpen‘ℂfld)) ∧ 𝑎 ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀))) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ ((((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld))‘𝑎))
10799, 104, 106syl2anc 586 . . . . . 6 ((𝜑𝑎𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ ((((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld))‘𝑎))
108 cnex 10612 . . . . . . . . . . 11 ℂ ∈ V
109108, 11ssexi 5218 . . . . . . . . . 10 𝑆 ∈ V
110109a1i 11 . . . . . . . . 9 ((𝜑𝑎𝑆) → 𝑆 ∈ V)
111 restabs 21767 . . . . . . . . 9 (((TopOpen‘ℂfld) ∈ Top ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ 𝑆𝑆 ∈ V) → (((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs ∘ − ))𝑀)) = ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)))
112100, 67, 110, 111mp3an2i 1462 . . . . . . . 8 ((𝜑𝑎𝑆) → (((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs ∘ − ))𝑀)) = ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)))
113112oveq1d 7165 . . . . . . 7 ((𝜑𝑎𝑆) → ((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld)))
114113fveq1d 6666 . . . . . 6 ((𝜑𝑎𝑆) → (((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld))‘𝑎) = ((((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld))‘𝑎))
115107, 114eleqtrrd 2916 . . . . 5 ((𝜑𝑎𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ (((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld))‘𝑎))
116 resttop 21762 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ V) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
117100, 109, 116mp2an 690 . . . . . . 7 ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top
118117a1i 11 . . . . . 6 ((𝜑𝑎𝑆) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
119 df-ss 3951 . . . . . . . . . 10 ((0(ball‘(abs ∘ − ))𝑀) ⊆ 𝑆 ↔ ((0(ball‘(abs ∘ − ))𝑀) ∩ 𝑆) = (0(ball‘(abs ∘ − ))𝑀))
12067, 119sylib 220 . . . . . . . . 9 ((𝜑𝑎𝑆) → ((0(ball‘(abs ∘ − ))𝑀) ∩ 𝑆) = (0(ball‘(abs ∘ − ))𝑀))
12193cnfldtopn 23384 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
122121blopn 23104 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑀 ∈ ℝ*) → (0(ball‘(abs ∘ − ))𝑀) ∈ (TopOpen‘ℂfld))
12355, 14, 58, 122mp3an12i 1461 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) ∈ (TopOpen‘ℂfld))
124 elrestr 16696 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ V ∧ (0(ball‘(abs ∘ − ))𝑀) ∈ (TopOpen‘ℂfld)) → ((0(ball‘(abs ∘ − ))𝑀) ∩ 𝑆) ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
125100, 109, 123, 124mp3an12i 1461 . . . . . . . . 9 ((𝜑𝑎𝑆) → ((0(ball‘(abs ∘ − ))𝑀) ∩ 𝑆) ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
126120, 125eqeltrrd 2914 . . . . . . . 8 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
127 isopn3i 21684 . . . . . . . 8 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ (0(ball‘(abs ∘ − ))𝑀) ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(0(ball‘(abs ∘ − ))𝑀)) = (0(ball‘(abs ∘ − ))𝑀))
128117, 126, 127sylancr 589 . . . . . . 7 ((𝜑𝑎𝑆) → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(0(ball‘(abs ∘ − ))𝑀)) = (0(ball‘(abs ∘ − ))𝑀))
12961, 128eleqtrrd 2916 . . . . . 6 ((𝜑𝑎𝑆) → 𝑎 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(0(ball‘(abs ∘ − ))𝑀)))
13090adantr 483 . . . . . 6 ((𝜑𝑎𝑆) → 𝐹:𝑆⟶ℂ)
131101restuni 21764 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ⊆ ℂ) → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
132100, 11, 131mp2an 690 . . . . . . 7 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆)
133132, 101cnprest 21891 . . . . . 6 (((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ 𝑆) ∧ (𝑎 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(0(ball‘(abs ∘ − ))𝑀)) ∧ 𝐹:𝑆⟶ℂ)) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑎) ↔ (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ (((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld))‘𝑎)))
134118, 67, 129, 130, 133syl22anc 836 . . . . 5 ((𝜑𝑎𝑆) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑎) ↔ (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ (((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld))‘𝑎)))
135115, 134mpbird 259 . . . 4 ((𝜑𝑎𝑆) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑎))
136135ralrimiva 3182 . . 3 (𝜑 → ∀𝑎𝑆 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑎))
137 resttopon 21763 . . . . 5 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
13895, 11, 137mp2an 690 . . . 4 ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)
139 cncnp 21882 . . . 4 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)) ↔ (𝐹:𝑆⟶ℂ ∧ ∀𝑎𝑆 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑎))))
140138, 95, 139mp2an 690 . . 3 (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)) ↔ (𝐹:𝑆⟶ℂ ∧ ∀𝑎𝑆 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑎)))
14190, 136, 140sylanbrc 585 . 2 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)))
142 eqid 2821 . . . 4 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
14393, 142, 96cncfcn 23511 . . 3 ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑆cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)))
14411, 92, 143mp2an 690 . 2 (𝑆cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld))
145141, 144eleqtrrdi 2924 1 (𝜑𝐹 ∈ (𝑆cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  {crab 3142  Vcvv 3494  cin 3934  wss 3935  ifcif 4466   cuni 4831   class class class wbr 5058  cmpt 5138  ccnv 5548  dom cdm 5549  cres 5551  cima 5552  ccom 5553   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150  supcsup 8898  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  +∞cpnf 10666  *cxr 10668   < clt 10669  cle 10670  cmin 10864   / cdiv 11291  2c2 11686  0cn0 11891  +crp 12383  [,)cico 12734  [,]cicc 12735  seqcseq 13363  cexp 13423  abscabs 14587  cli 14835  Σcsu 15036  t crest 16688  TopOpenctopn 16689  ∞Metcxmet 20524  ballcbl 20526  fldccnfld 20539  Topctop 21495  TopOnctopon 21512  intcnt 21619   Cn ccn 21826   CnP ccnp 21827  cnccncf 23478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-ntr 21622  df-cn 21829  df-cnp 21830  df-tx 22164  df-hmeo 22357  df-xms 22924  df-ms 22925  df-tms 22926  df-cncf 23480  df-ulm 24959
This theorem is referenced by:  pserdvlem2  25010  pserdv  25011  abelth  25023  logtayl  25237
  Copyright terms: Public domain W3C validator