MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psercn2 Structured version   Visualization version   GIF version

Theorem psercn2 24094
Description: Since by pserulm 24093 the series converges uniformly, it is also continuous by ulmcn 24070. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
pserulm.h 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
pserulm.m (𝜑𝑀 ∈ ℝ)
pserulm.l (𝜑𝑀 < 𝑅)
pserulm.y (𝜑𝑆 ⊆ (abs “ (0[,]𝑀)))
Assertion
Ref Expression
psercn2 (𝜑𝐹 ∈ (𝑆cn→ℂ))
Distinct variable groups:   𝑗,𝑛,𝑟,𝑥,𝑦,𝐴   𝑖,𝑗,𝑦,𝐻   𝑖,𝑀,𝑗,𝑦   𝑥,𝑖,𝑟   𝑖,𝐺,𝑗,𝑟,𝑦   𝑆,𝑖,𝑗,𝑦   𝜑,𝑖,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑖)   𝑅(𝑥,𝑦,𝑖,𝑗,𝑛,𝑟)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑖,𝑗,𝑛,𝑟)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑛,𝑟)   𝑀(𝑥,𝑛,𝑟)

Proof of Theorem psercn2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 11673 . 2 0 = (ℤ‘0)
2 0zd 11340 . 2 (𝜑 → 0 ∈ ℤ)
3 pserulm.y . . . . . . 7 (𝜑𝑆 ⊆ (abs “ (0[,]𝑀)))
4 cnvimass 5449 . . . . . . . 8 (abs “ (0[,]𝑀)) ⊆ dom abs
5 absf 14018 . . . . . . . . 9 abs:ℂ⟶ℝ
65fdmi 6014 . . . . . . . 8 dom abs = ℂ
74, 6sseqtri 3621 . . . . . . 7 (abs “ (0[,]𝑀)) ⊆ ℂ
83, 7syl6ss 3599 . . . . . 6 (𝜑𝑆 ⊆ ℂ)
98adantr 481 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → 𝑆 ⊆ ℂ)
109resmptd 5416 . . . 4 ((𝜑𝑖 ∈ ℕ0) → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ↾ 𝑆) = (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
11 simplr 791 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → 𝑦 ∈ ℂ)
12 elfznn0 12381 . . . . . . . . . 10 (𝑘 ∈ (0...𝑖) → 𝑘 ∈ ℕ0)
1312adantl 482 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℕ0)
14 pserf.g . . . . . . . . . 10 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
1514pserval2 24082 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑦)‘𝑘) = ((𝐴𝑘) · (𝑦𝑘)))
1611, 13, 15syl2anc 692 . . . . . . . 8 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐺𝑦)‘𝑘) = ((𝐴𝑘) · (𝑦𝑘)))
17 simpr 477 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
1817, 1syl6eleq 2708 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ (ℤ‘0))
1918adantr 481 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) → 𝑖 ∈ (ℤ‘0))
20 pserf.a . . . . . . . . . . . . 13 (𝜑𝐴:ℕ0⟶ℂ)
2120adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ)
2221ffvelrnda 6320 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
2322adantlr 750 . . . . . . . . . 10 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
24 expcl 12825 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑦𝑘) ∈ ℂ)
2524adantll 749 . . . . . . . . . 10 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑦𝑘) ∈ ℂ)
2623, 25mulcld 10011 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑦𝑘)) ∈ ℂ)
2712, 26sylan2 491 . . . . . . . 8 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐴𝑘) · (𝑦𝑘)) ∈ ℂ)
2816, 19, 27fsumser 14401 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) → Σ𝑘 ∈ (0...𝑖)((𝐴𝑘) · (𝑦𝑘)) = (seq0( + , (𝐺𝑦))‘𝑖))
2928mpteq2dva 4709 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑖)((𝐴𝑘) · (𝑦𝑘))) = (𝑦 ∈ ℂ ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
30 eqid 2621 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
3130cnfldtopon 22505 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
3231a1i 11 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
33 fzfid 12719 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → (0...𝑖) ∈ Fin)
3431a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
35 ffvelrn 6318 . . . . . . . . . . 11 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3621, 12, 35syl2an 494 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝐴𝑘) ∈ ℂ)
3734, 34, 36cnmptc 21384 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦 ∈ ℂ ↦ (𝐴𝑘)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
3812adantl 482 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℕ0)
3930expcn 22594 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑦 ∈ ℂ ↦ (𝑦𝑘)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
4038, 39syl 17 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦 ∈ ℂ ↦ (𝑦𝑘)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
4130mulcn 22589 . . . . . . . . . 10 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
4241a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
4334, 37, 40, 42cnmpt12f 21388 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦 ∈ ℂ ↦ ((𝐴𝑘) · (𝑦𝑘))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
4430, 32, 33, 43fsumcn 22592 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑖)((𝐴𝑘) · (𝑦𝑘))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
4530cncfcn1 22632 . . . . . . 7 (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
4644, 45syl6eleqr 2709 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑖)((𝐴𝑘) · (𝑦𝑘))) ∈ (ℂ–cn→ℂ))
4729, 46eqeltrrd 2699 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ (ℂ–cn→ℂ))
48 rescncf 22619 . . . . 5 (𝑆 ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ (ℂ–cn→ℂ) → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ↾ 𝑆) ∈ (𝑆cn→ℂ)))
499, 47, 48sylc 65 . . . 4 ((𝜑𝑖 ∈ ℕ0) → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ↾ 𝑆) ∈ (𝑆cn→ℂ))
5010, 49eqeltrrd 2699 . . 3 ((𝜑𝑖 ∈ ℕ0) → (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ (𝑆cn→ℂ))
51 pserulm.h . . 3 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
5250, 51fmptd 6346 . 2 (𝜑𝐻:ℕ0⟶(𝑆cn→ℂ))
53 pserf.f . . 3 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
54 pserf.r . . 3 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
55 pserulm.m . . 3 (𝜑𝑀 ∈ ℝ)
56 pserulm.l . . 3 (𝜑𝑀 < 𝑅)
5714, 53, 20, 54, 51, 55, 56, 3pserulm 24093 . 2 (𝜑𝐻(⇝𝑢𝑆)𝐹)
581, 2, 52, 57ulmcn 24070 1 (𝜑𝐹 ∈ (𝑆cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  {crab 2911  wss 3559   class class class wbr 4618  cmpt 4678  ccnv 5078  dom cdm 5079  cres 5081  cima 5082  wf 5848  cfv 5852  (class class class)co 6610  supcsup 8297  cc 9885  cr 9886  0cc0 9887   + caddc 9890   · cmul 9892  *cxr 10024   < clt 10025  0cn0 11243  cuz 11638  [,]cicc 12127  ...cfz 12275  seqcseq 12748  cexp 12807  abscabs 13915  cli 14156  Σcsu 14357  TopOpenctopn 16010  fldccnfld 19674  TopOnctopon 20643   Cn ccn 20947   ×t ctx 21282  cnccncf 22598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965  ax-addf 9966  ax-mulf 9967
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7860  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-fsupp 8227  df-fi 8268  df-sup 8299  df-inf 8300  df-oi 8366  df-card 8716  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-z 11329  df-dec 11445  df-uz 11639  df-q 11740  df-rp 11784  df-xneg 11897  df-xadd 11898  df-xmul 11899  df-ico 12130  df-icc 12131  df-fz 12276  df-fzo 12414  df-fl 12540  df-seq 12749  df-exp 12808  df-hash 13065  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-limsup 14143  df-clim 14160  df-rlim 14161  df-sum 14358  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-sets 15794  df-ress 15795  df-plusg 15882  df-mulr 15883  df-starv 15884  df-sca 15885  df-vsca 15886  df-ip 15887  df-tset 15888  df-ple 15889  df-ds 15892  df-unif 15893  df-hom 15894  df-cco 15895  df-rest 16011  df-topn 16012  df-0g 16030  df-gsum 16031  df-topgen 16032  df-pt 16033  df-prds 16036  df-xrs 16090  df-qtop 16095  df-imas 16096  df-xps 16098  df-mre 16174  df-mrc 16175  df-acs 16177  df-mgm 17170  df-sgrp 17212  df-mnd 17223  df-submnd 17264  df-mulg 17469  df-cntz 17678  df-cmn 18123  df-psmet 19666  df-xmet 19667  df-met 19668  df-bl 19669  df-mopn 19670  df-cnfld 19675  df-top 20627  df-topon 20644  df-topsp 20657  df-bases 20670  df-cn 20950  df-cnp 20951  df-tx 21284  df-hmeo 21477  df-xms 22044  df-ms 22045  df-tms 22046  df-cncf 22600  df-ulm 24048
This theorem is referenced by:  psercn  24097
  Copyright terms: Public domain W3C validator