MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psercnlem2 Structured version   Visualization version   GIF version

Theorem psercnlem2 25011
Description: Lemma for psercn 25013. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercnlem2.i ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
Assertion
Ref Expression
psercnlem2 ((𝜑𝑎𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (abs “ (0[,]𝑀)) ∧ (abs “ (0[,]𝑀)) ⊆ 𝑆))
Distinct variable groups:   𝑗,𝑎,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑦   𝑗,𝐺,𝑟,𝑦   𝑆,𝑎,𝑗,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑗,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem psercnlem2
Dummy variables 𝑤 𝑧 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psercn.s . . . . . . 7 𝑆 = (abs “ (0[,)𝑅))
2 cnvimass 5948 . . . . . . . 8 (abs “ (0[,)𝑅)) ⊆ dom abs
3 absf 14696 . . . . . . . . 9 abs:ℂ⟶ℝ
43fdmi 6523 . . . . . . . 8 dom abs = ℂ
52, 4sseqtri 4002 . . . . . . 7 (abs “ (0[,)𝑅)) ⊆ ℂ
61, 5eqsstri 4000 . . . . . 6 𝑆 ⊆ ℂ
76a1i 11 . . . . 5 (𝜑𝑆 ⊆ ℂ)
87sselda 3966 . . . 4 ((𝜑𝑎𝑆) → 𝑎 ∈ ℂ)
98abscld 14795 . . . . 5 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ ℝ)
108absge0d 14803 . . . . 5 ((𝜑𝑎𝑆) → 0 ≤ (abs‘𝑎))
11 psercnlem2.i . . . . . 6 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
1211simp2d 1139 . . . . 5 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑀)
13 0re 10642 . . . . . 6 0 ∈ ℝ
1411simp1d 1138 . . . . . . 7 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ+)
1514rpxrd 12431 . . . . . 6 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ*)
16 elico2 12799 . . . . . 6 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ*) → ((abs‘𝑎) ∈ (0[,)𝑀) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑀)))
1713, 15, 16sylancr 589 . . . . 5 ((𝜑𝑎𝑆) → ((abs‘𝑎) ∈ (0[,)𝑀) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑀)))
189, 10, 12, 17mpbir3and 1338 . . . 4 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ (0[,)𝑀))
19 ffn 6513 . . . . 5 (abs:ℂ⟶ℝ → abs Fn ℂ)
20 elpreima 6827 . . . . 5 (abs Fn ℂ → (𝑎 ∈ (abs “ (0[,)𝑀)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑀))))
213, 19, 20mp2b 10 . . . 4 (𝑎 ∈ (abs “ (0[,)𝑀)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑀)))
228, 18, 21sylanbrc 585 . . 3 ((𝜑𝑎𝑆) → 𝑎 ∈ (abs “ (0[,)𝑀)))
23 eqid 2821 . . . . 5 (abs ∘ − ) = (abs ∘ − )
2423cnbl0 23381 . . . 4 (𝑀 ∈ ℝ* → (abs “ (0[,)𝑀)) = (0(ball‘(abs ∘ − ))𝑀))
2515, 24syl 17 . . 3 ((𝜑𝑎𝑆) → (abs “ (0[,)𝑀)) = (0(ball‘(abs ∘ − ))𝑀))
2622, 25eleqtrd 2915 . 2 ((𝜑𝑎𝑆) → 𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀))
27 icossicc 12823 . . . 4 (0[,)𝑀) ⊆ (0[,]𝑀)
28 imass2 5964 . . . 4 ((0[,)𝑀) ⊆ (0[,]𝑀) → (abs “ (0[,)𝑀)) ⊆ (abs “ (0[,]𝑀)))
2927, 28mp1i 13 . . 3 ((𝜑𝑎𝑆) → (abs “ (0[,)𝑀)) ⊆ (abs “ (0[,]𝑀)))
3025, 29eqsstrrd 4005 . 2 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) ⊆ (abs “ (0[,]𝑀)))
31 iccssxr 12818 . . . . . 6 (0[,]+∞) ⊆ ℝ*
32 pserf.g . . . . . . . 8 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
33 pserf.a . . . . . . . 8 (𝜑𝐴:ℕ0⟶ℂ)
34 pserf.r . . . . . . . 8 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
3532, 33, 34radcnvcl 25004 . . . . . . 7 (𝜑𝑅 ∈ (0[,]+∞))
3635adantr 483 . . . . . 6 ((𝜑𝑎𝑆) → 𝑅 ∈ (0[,]+∞))
3731, 36sseldi 3964 . . . . 5 ((𝜑𝑎𝑆) → 𝑅 ∈ ℝ*)
3811simp3d 1140 . . . . 5 ((𝜑𝑎𝑆) → 𝑀 < 𝑅)
39 df-ico 12743 . . . . . 6 [,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢𝑤𝑤 < 𝑣)})
40 df-icc 12744 . . . . . 6 [,] = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢𝑤𝑤𝑣)})
41 xrlelttr 12548 . . . . . 6 ((𝑧 ∈ ℝ*𝑀 ∈ ℝ*𝑅 ∈ ℝ*) → ((𝑧𝑀𝑀 < 𝑅) → 𝑧 < 𝑅))
4239, 40, 41ixxss2 12756 . . . . 5 ((𝑅 ∈ ℝ*𝑀 < 𝑅) → (0[,]𝑀) ⊆ (0[,)𝑅))
4337, 38, 42syl2anc 586 . . . 4 ((𝜑𝑎𝑆) → (0[,]𝑀) ⊆ (0[,)𝑅))
44 imass2 5964 . . . 4 ((0[,]𝑀) ⊆ (0[,)𝑅) → (abs “ (0[,]𝑀)) ⊆ (abs “ (0[,)𝑅)))
4543, 44syl 17 . . 3 ((𝜑𝑎𝑆) → (abs “ (0[,]𝑀)) ⊆ (abs “ (0[,)𝑅)))
4645, 1sseqtrrdi 4017 . 2 ((𝜑𝑎𝑆) → (abs “ (0[,]𝑀)) ⊆ 𝑆)
4726, 30, 463jca 1124 1 ((𝜑𝑎𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (abs “ (0[,]𝑀)) ∧ (abs “ (0[,]𝑀)) ⊆ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  {crab 3142  wss 3935   class class class wbr 5065  cmpt 5145  ccnv 5553  dom cdm 5554  cima 5557  ccom 5558   Fn wfn 6349  wf 6350  cfv 6354  (class class class)co 7155  supcsup 8903  cc 10534  cr 10535  0cc0 10536   + caddc 10539   · cmul 10541  +∞cpnf 10671  *cxr 10673   < clt 10674  cle 10675  cmin 10869  0cn0 11896  +crp 12388  [,)cico 12739  [,]cicc 12740  seqcseq 13368  cexp 13428  abscabs 14592  cli 14840  Σcsu 15041  ballcbl 20531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-xadd 12507  df-ico 12743  df-icc 12744  df-fz 12892  df-seq 13369  df-exp 13429  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539
This theorem is referenced by:  psercn  25013  pserdvlem2  25015  pserdv  25016
  Copyright terms: Public domain W3C validator