MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserdv Structured version   Visualization version   GIF version

Theorem pserdv 25009
Description: The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercn.m 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
pserdv.b 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2))
Assertion
Ref Expression
pserdv (𝜑 → (ℂ D 𝐹) = (𝑦𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
Distinct variable groups:   𝑗,𝑎,𝑘,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑘,𝑦   𝐵,𝑗,𝑘,𝑥,𝑦   𝑗,𝐺,𝑘,𝑟,𝑦   𝑆,𝑎,𝑗,𝑘,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑘,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐵(𝑛,𝑟,𝑎)   𝑅(𝑥,𝑦,𝑗,𝑘,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑘,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem pserdv
StepHypRef Expression
1 dvfcn 24498 . . . . 5 (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ
2 ssidd 3988 . . . . . . . 8 (𝜑 → ℂ ⊆ ℂ)
3 pserf.g . . . . . . . . . 10 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
4 pserf.f . . . . . . . . . 10 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
5 pserf.a . . . . . . . . . 10 (𝜑𝐴:ℕ0⟶ℂ)
6 pserf.r . . . . . . . . . 10 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
7 psercn.s . . . . . . . . . 10 𝑆 = (abs “ (0[,)𝑅))
8 psercn.m . . . . . . . . . 10 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
93, 4, 5, 6, 7, 8psercn 25006 . . . . . . . . 9 (𝜑𝐹 ∈ (𝑆cn→ℂ))
10 cncff 23493 . . . . . . . . 9 (𝐹 ∈ (𝑆cn→ℂ) → 𝐹:𝑆⟶ℂ)
119, 10syl 17 . . . . . . . 8 (𝜑𝐹:𝑆⟶ℂ)
12 cnvimass 5942 . . . . . . . . . . 11 (abs “ (0[,)𝑅)) ⊆ dom abs
13 absf 14689 . . . . . . . . . . . 12 abs:ℂ⟶ℝ
1413fdmi 6517 . . . . . . . . . . 11 dom abs = ℂ
1512, 14sseqtri 4001 . . . . . . . . . 10 (abs “ (0[,)𝑅)) ⊆ ℂ
167, 15eqsstri 3999 . . . . . . . . 9 𝑆 ⊆ ℂ
1716a1i 11 . . . . . . . 8 (𝜑𝑆 ⊆ ℂ)
182, 11, 17dvbss 24491 . . . . . . 7 (𝜑 → dom (ℂ D 𝐹) ⊆ 𝑆)
19 ssidd 3988 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → ℂ ⊆ ℂ)
2011adantr 483 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 𝐹:𝑆⟶ℂ)
2116a1i 11 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 𝑆 ⊆ ℂ)
22 pserdv.b . . . . . . . . . . . 12 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2))
23 cnxmet 23373 . . . . . . . . . . . . 13 (abs ∘ − ) ∈ (∞Met‘ℂ)
24 0cnd 10626 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → 0 ∈ ℂ)
2517sselda 3965 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎𝑆) → 𝑎 ∈ ℂ)
2625abscld 14788 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ ℝ)
273, 4, 5, 6, 7, 8psercnlem1 25005 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
2827simp1d 1137 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ+)
2928rpred 12423 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ)
3026, 29readdcld 10662 . . . . . . . . . . . . . . . 16 ((𝜑𝑎𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ)
31 0red 10636 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → 0 ∈ ℝ)
3225absge0d 14796 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → 0 ≤ (abs‘𝑎))
3326, 28ltaddrpd 12456 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → (abs‘𝑎) < ((abs‘𝑎) + 𝑀))
3431, 26, 30, 32, 33lelttrd 10790 . . . . . . . . . . . . . . . 16 ((𝜑𝑎𝑆) → 0 < ((abs‘𝑎) + 𝑀))
3530, 34elrpd 12420 . . . . . . . . . . . . . . 15 ((𝜑𝑎𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ+)
3635rphalfcld 12435 . . . . . . . . . . . . . 14 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+)
3736rpxrd 12424 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*)
38 blssm 23020 . . . . . . . . . . . . 13 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ ℂ)
3923, 24, 37, 38mp3an2i 1460 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ ℂ)
4022, 39eqsstrid 4013 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 𝐵 ⊆ ℂ)
41 eqid 2819 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4241cnfldtopon 23383 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
4342toponrestid 21521 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
4441, 43dvres 24501 . . . . . . . . . . 11 (((ℂ ⊆ ℂ ∧ 𝐹:𝑆⟶ℂ) ∧ (𝑆 ⊆ ℂ ∧ 𝐵 ⊆ ℂ)) → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)))
4519, 20, 21, 40, 44syl22anc 836 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)))
46 resss 5871 . . . . . . . . . 10 ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)) ⊆ (ℂ D 𝐹)
4745, 46eqsstrdi 4019 . . . . . . . . 9 ((𝜑𝑎𝑆) → (ℂ D (𝐹𝐵)) ⊆ (ℂ D 𝐹))
48 dmss 5764 . . . . . . . . 9 ((ℂ D (𝐹𝐵)) ⊆ (ℂ D 𝐹) → dom (ℂ D (𝐹𝐵)) ⊆ dom (ℂ D 𝐹))
4947, 48syl 17 . . . . . . . 8 ((𝜑𝑎𝑆) → dom (ℂ D (𝐹𝐵)) ⊆ dom (ℂ D 𝐹))
503, 4, 5, 6, 7, 8pserdvlem1 25007 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅))
513, 4, 5, 6, 7, 50psercnlem2 25004 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ∧ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ∧ (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ⊆ 𝑆))
5251simp1d 1137 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝑎 ∈ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)))
5352, 22eleqtrrdi 2922 . . . . . . . . 9 ((𝜑𝑎𝑆) → 𝑎𝐵)
543, 4, 5, 6, 7, 8, 22pserdvlem2 25008 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (ℂ D (𝐹𝐵)) = (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
5554dmeqd 5767 . . . . . . . . . 10 ((𝜑𝑎𝑆) → dom (ℂ D (𝐹𝐵)) = dom (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
56 dmmptg 6089 . . . . . . . . . . 11 (∀𝑦𝐵 Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) ∈ V → dom (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))) = 𝐵)
57 sumex 15036 . . . . . . . . . . . 12 Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) ∈ V
5857a1i 11 . . . . . . . . . . 11 (𝑦𝐵 → Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) ∈ V)
5956, 58mprg 3150 . . . . . . . . . 10 dom (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))) = 𝐵
6055, 59syl6eq 2870 . . . . . . . . 9 ((𝜑𝑎𝑆) → dom (ℂ D (𝐹𝐵)) = 𝐵)
6153, 60eleqtrrd 2914 . . . . . . . 8 ((𝜑𝑎𝑆) → 𝑎 ∈ dom (ℂ D (𝐹𝐵)))
6249, 61sseldd 3966 . . . . . . 7 ((𝜑𝑎𝑆) → 𝑎 ∈ dom (ℂ D 𝐹))
6318, 62eqelssd 3986 . . . . . 6 (𝜑 → dom (ℂ D 𝐹) = 𝑆)
6463feq2d 6493 . . . . 5 (𝜑 → ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ↔ (ℂ D 𝐹):𝑆⟶ℂ))
651, 64mpbii 235 . . . 4 (𝜑 → (ℂ D 𝐹):𝑆⟶ℂ)
6665feqmptd 6726 . . 3 (𝜑 → (ℂ D 𝐹) = (𝑎𝑆 ↦ ((ℂ D 𝐹)‘𝑎)))
67 ffun 6510 . . . . . . 7 ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ → Fun (ℂ D 𝐹))
681, 67mp1i 13 . . . . . 6 ((𝜑𝑎𝑆) → Fun (ℂ D 𝐹))
69 funssfv 6684 . . . . . 6 ((Fun (ℂ D 𝐹) ∧ (ℂ D (𝐹𝐵)) ⊆ (ℂ D 𝐹) ∧ 𝑎 ∈ dom (ℂ D (𝐹𝐵))) → ((ℂ D 𝐹)‘𝑎) = ((ℂ D (𝐹𝐵))‘𝑎))
7068, 47, 61, 69syl3anc 1366 . . . . 5 ((𝜑𝑎𝑆) → ((ℂ D 𝐹)‘𝑎) = ((ℂ D (𝐹𝐵))‘𝑎))
7154fveq1d 6665 . . . . 5 ((𝜑𝑎𝑆) → ((ℂ D (𝐹𝐵))‘𝑎) = ((𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))‘𝑎))
72 oveq1 7155 . . . . . . . . 9 (𝑦 = 𝑎 → (𝑦𝑘) = (𝑎𝑘))
7372oveq2d 7164 . . . . . . . 8 (𝑦 = 𝑎 → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)))
7473sumeq2sdv 15053 . . . . . . 7 (𝑦 = 𝑎 → Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)))
75 eqid 2819 . . . . . . 7 (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))) = (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
76 sumex 15036 . . . . . . 7 Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)) ∈ V
7774, 75, 76fvmpt 6761 . . . . . 6 (𝑎𝐵 → ((𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))‘𝑎) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)))
7853, 77syl 17 . . . . 5 ((𝜑𝑎𝑆) → ((𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))‘𝑎) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)))
7970, 71, 783eqtrd 2858 . . . 4 ((𝜑𝑎𝑆) → ((ℂ D 𝐹)‘𝑎) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)))
8079mpteq2dva 5152 . . 3 (𝜑 → (𝑎𝑆 ↦ ((ℂ D 𝐹)‘𝑎)) = (𝑎𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘))))
8166, 80eqtrd 2854 . 2 (𝜑 → (ℂ D 𝐹) = (𝑎𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘))))
82 oveq1 7155 . . . . 5 (𝑎 = 𝑦 → (𝑎𝑘) = (𝑦𝑘))
8382oveq2d 7164 . . . 4 (𝑎 = 𝑦 → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
8483sumeq2sdv 15053 . . 3 (𝑎 = 𝑦 → Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
8584cbvmptv 5160 . 2 (𝑎𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘))) = (𝑦𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
8681, 85syl6eq 2870 1 (𝜑 → (ℂ D 𝐹) = (𝑦𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wcel 2108  {crab 3140  Vcvv 3493  wss 3934  ifcif 4465   class class class wbr 5057  cmpt 5137  ccnv 5547  dom cdm 5548  cres 5550  cima 5551  ccom 5552  Fun wfun 6342  wf 6344  cfv 6348  (class class class)co 7148  supcsup 8896  cc 10527  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534  *cxr 10666   < clt 10667  cmin 10862   / cdiv 11289  2c2 11684  0cn0 11889  +crp 12381  [,)cico 12732  [,]cicc 12733  seqcseq 13361  cexp 13421  abscabs 14585  cli 14833  Σcsu 15034  TopOpenctopn 16687  ∞Metcxmet 20522  ballcbl 20524  fldccnfld 20537  intcnt 21617  cnccncf 23476   D cdv 24453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ico 12736  df-icc 12737  df-fz 12885  df-fzo 13026  df-fl 13154  df-seq 13362  df-exp 13422  df-hash 13683  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20529  df-xmet 20530  df-met 20531  df-bl 20532  df-mopn 20533  df-fbas 20534  df-fg 20535  df-cnfld 20538  df-top 21494  df-topon 21511  df-topsp 21533  df-bases 21546  df-cld 21619  df-ntr 21620  df-cls 21621  df-nei 21698  df-lp 21736  df-perf 21737  df-cn 21827  df-cnp 21828  df-haus 21915  df-cmp 21987  df-tx 22162  df-hmeo 22355  df-fil 22446  df-fm 22538  df-flim 22539  df-flf 22540  df-xms 22922  df-ms 22923  df-tms 22924  df-cncf 23478  df-limc 24456  df-dv 24457  df-ulm 24957
This theorem is referenced by:  pserdv2  25010
  Copyright terms: Public domain W3C validator