MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserval Structured version   Visualization version   GIF version

Theorem pserval 25000
Description: Value of the function 𝐺 that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypothesis
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
Assertion
Ref Expression
pserval (𝑋 ∈ ℂ → (𝐺𝑋) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑋𝑚))))
Distinct variable groups:   𝑚,𝑛,𝑥,𝐴   𝑚,𝑋   𝑚,𝐺
Allowed substitution hints:   𝐺(𝑥,𝑛)   𝑋(𝑥,𝑛)

Proof of Theorem pserval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7165 . . . 4 (𝑦 = 𝑋 → (𝑦𝑚) = (𝑋𝑚))
21oveq2d 7174 . . 3 (𝑦 = 𝑋 → ((𝐴𝑚) · (𝑦𝑚)) = ((𝐴𝑚) · (𝑋𝑚)))
32mpteq2dv 5164 . 2 (𝑦 = 𝑋 → (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑦𝑚))) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑋𝑚))))
4 pser.g . . 3 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
5 fveq2 6672 . . . . . . 7 (𝑛 = 𝑚 → (𝐴𝑛) = (𝐴𝑚))
6 oveq2 7166 . . . . . . 7 (𝑛 = 𝑚 → (𝑥𝑛) = (𝑥𝑚))
75, 6oveq12d 7176 . . . . . 6 (𝑛 = 𝑚 → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑚) · (𝑥𝑚)))
87cbvmptv 5171 . . . . 5 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))
9 oveq1 7165 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝑚) = (𝑦𝑚))
109oveq2d 7174 . . . . . 6 (𝑥 = 𝑦 → ((𝐴𝑚) · (𝑥𝑚)) = ((𝐴𝑚) · (𝑦𝑚)))
1110mpteq2dv 5164 . . . . 5 (𝑥 = 𝑦 → (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚))) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑦𝑚))))
128, 11syl5eq 2870 . . . 4 (𝑥 = 𝑦 → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑦𝑚))))
1312cbvmptv 5171 . . 3 (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛)))) = (𝑦 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑦𝑚))))
144, 13eqtri 2846 . 2 𝐺 = (𝑦 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑦𝑚))))
15 nn0ex 11906 . . 3 0 ∈ V
1615mptex 6988 . 2 (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑋𝑚))) ∈ V
173, 14, 16fvmpt 6770 1 (𝑋 ∈ ℂ → (𝐺𝑋) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑋𝑚))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  cmpt 5148  cfv 6357  (class class class)co 7158  cc 10537   · cmul 10544  0cn0 11900  cexp 13432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-1cn 10597  ax-addcl 10599
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-nn 11641  df-n0 11901
This theorem is referenced by:  pserval2  25001  psergf  25002
  Copyright terms: Public domain W3C validator