MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgndiflemA Structured version   Visualization version   GIF version

Theorem psgndiflemA 19869
Description: Lemma 2 for psgndif 19870. (Contributed by AV, 31-Jan-2019.)
Hypotheses
Ref Expression
psgnfix.p 𝑃 = (Base‘(SymGrp‘𝑁))
psgnfix.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
psgnfix.s 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾}))
psgnfix.z 𝑍 = (SymGrp‘𝑁)
psgnfix.r 𝑅 = ran (pmTrsp‘𝑁)
Assertion
Ref Expression
psgndiflemA (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(#‘𝑊)) = (-1↑(#‘𝑈)))))
Distinct variable groups:   𝐾,𝑞   𝑃,𝑞   𝑄,𝑞
Allowed substitution hints:   𝑅(𝑞)   𝑆(𝑞)   𝑇(𝑞)   𝑈(𝑞)   𝑁(𝑞)   𝑊(𝑞)   𝑍(𝑞)

Proof of Theorem psgndiflemA
Dummy variables 𝑤 𝑖 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6150 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (#‘𝑤) = (#‘𝑊))
21eqeq1d 2623 . . . . . . . . . . 11 (𝑤 = 𝑊 → ((#‘𝑤) = (#‘𝑟) ↔ (#‘𝑊) = (#‘𝑟)))
31oveq2d 6623 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (0..^(#‘𝑤)) = (0..^(#‘𝑊)))
4 fveq1 6149 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊 → (𝑤𝑖) = (𝑊𝑖))
54fveq1d 6152 . . . . . . . . . . . . . . 15 (𝑤 = 𝑊 → ((𝑤𝑖)‘𝑛) = ((𝑊𝑖)‘𝑛))
65eqeq1d 2623 . . . . . . . . . . . . . 14 (𝑤 = 𝑊 → (((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛) ↔ ((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))
76ralbidv 2980 . . . . . . . . . . . . 13 (𝑤 = 𝑊 → (∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛) ↔ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))
87anbi2d 739 . . . . . . . . . . . 12 (𝑤 = 𝑊 → ((((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)) ↔ (((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))))
93, 8raleqbidv 3141 . . . . . . . . . . 11 (𝑤 = 𝑊 → (∀𝑖 ∈ (0..^(#‘𝑤))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)) ↔ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))))
102, 9anbi12d 746 . . . . . . . . . 10 (𝑤 = 𝑊 → (((#‘𝑤) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑤))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))) ↔ ((#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))))
1110rexbidv 3045 . . . . . . . . 9 (𝑤 = 𝑊 → (∃𝑟 ∈ Word 𝑅((#‘𝑤) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑤))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))) ↔ ∃𝑟 ∈ Word 𝑅((#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))))
1211rspccv 3292 . . . . . . . 8 (∀𝑤 ∈ Word 𝑇𝑟 ∈ Word 𝑅((#‘𝑤) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑤))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))) → (𝑊 ∈ Word 𝑇 → ∃𝑟 ∈ Word 𝑅((#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))))
13 psgnfix.t . . . . . . . . 9 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
14 psgnfix.r . . . . . . . . 9 𝑅 = ran (pmTrsp‘𝑁)
1513, 14pmtrdifwrdel2 17830 . . . . . . . 8 (𝐾𝑁 → ∀𝑤 ∈ Word 𝑇𝑟 ∈ Word 𝑅((#‘𝑤) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑤))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑤𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))))
1612, 15syl11 33 . . . . . . 7 (𝑊 ∈ Word 𝑇 → (𝐾𝑁 → ∃𝑟 ∈ Word 𝑅((#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))))
17163ad2ant1 1080 . . . . . 6 ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → (𝐾𝑁 → ∃𝑟 ∈ Word 𝑅((#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))))
1817com12 32 . . . . 5 (𝐾𝑁 → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → ∃𝑟 ∈ Word 𝑅((#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))))
1918ad2antlr 762 . . . 4 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → ∃𝑟 ∈ Word 𝑅((#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))))
2019imp 445 . . 3 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅)) → ∃𝑟 ∈ Word 𝑅((#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))))
21 oveq2 6615 . . . . . . . . 9 ((#‘𝑊) = (#‘𝑟) → (-1↑(#‘𝑊)) = (-1↑(#‘𝑟)))
2221adantr 481 . . . . . . . 8 (((#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))) → (-1↑(#‘𝑊)) = (-1↑(#‘𝑟)))
2322ad3antlr 766 . . . . . . 7 ((((𝑟 ∈ Word 𝑅 ∧ ((#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → (-1↑(#‘𝑊)) = (-1↑(#‘𝑟)))
24 psgnfix.z . . . . . . . 8 𝑍 = (SymGrp‘𝑁)
25 simplll 797 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅)) → 𝑁 ∈ Fin)
2625ad2antlr 762 . . . . . . . 8 ((((𝑟 ∈ Word 𝑅 ∧ ((#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → 𝑁 ∈ Fin)
27 simplll 797 . . . . . . . 8 ((((𝑟 ∈ Word 𝑅 ∧ ((#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → 𝑟 ∈ Word 𝑅)
28 simprr3 1109 . . . . . . . . 9 (((𝑟 ∈ Word 𝑅 ∧ ((#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) → 𝑈 ∈ Word 𝑅)
2928adantr 481 . . . . . . . 8 ((((𝑟 ∈ Word 𝑅 ∧ ((#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → 𝑈 ∈ Word 𝑅)
30 simplrl 799 . . . . . . . . . 10 ((((𝑟 ∈ Word 𝑅 ∧ ((#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → ((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}))
31 3simpa 1056 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)))
3231adantl 482 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅)) → (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)))
3332ad2antlr 762 . . . . . . . . . 10 ((((𝑟 ∈ Word 𝑅 ∧ ((#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)))
34 simplrl 799 . . . . . . . . . . 11 (((𝑟 ∈ Word 𝑅 ∧ ((#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) → (#‘𝑊) = (#‘𝑟))
3534adantr 481 . . . . . . . . . 10 ((((𝑟 ∈ Word 𝑅 ∧ ((#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → (#‘𝑊) = (#‘𝑟))
36 simplrr 800 . . . . . . . . . . 11 (((𝑟 ∈ Word 𝑅 ∧ ((#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) → ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))
3736adantr 481 . . . . . . . . . 10 ((((𝑟 ∈ Word 𝑅 ∧ ((#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))
38 psgnfix.p . . . . . . . . . . . . 13 𝑃 = (Base‘(SymGrp‘𝑁))
39 psgnfix.s . . . . . . . . . . . . 13 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾}))
4038, 13, 39, 24, 14psgndiflemB 19868 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)) → ((𝑟 ∈ Word 𝑅 ∧ (#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))) → 𝑄 = (𝑍 Σg 𝑟))))
4140imp31 448 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑟 ∈ Word 𝑅 ∧ (#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) → 𝑄 = (𝑍 Σg 𝑟))
4241eqcomd 2627 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑟 ∈ Word 𝑅 ∧ (#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) → (𝑍 Σg 𝑟) = 𝑄)
4330, 33, 27, 35, 37, 42syl23anc 1330 . . . . . . . . 9 ((((𝑟 ∈ Word 𝑅 ∧ ((#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → (𝑍 Σg 𝑟) = 𝑄)
44 id 22 . . . . . . . . . . 11 (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → 𝑄 = ((SymGrp‘𝑁) Σg 𝑈))
4524eqcomi 2630 . . . . . . . . . . . 12 (SymGrp‘𝑁) = 𝑍
4645oveq1i 6617 . . . . . . . . . . 11 ((SymGrp‘𝑁) Σg 𝑈) = (𝑍 Σg 𝑈)
4744, 46syl6eq 2671 . . . . . . . . . 10 (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → 𝑄 = (𝑍 Σg 𝑈))
4847adantl 482 . . . . . . . . 9 ((((𝑟 ∈ Word 𝑅 ∧ ((#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → 𝑄 = (𝑍 Σg 𝑈))
4943, 48eqtrd 2655 . . . . . . . 8 ((((𝑟 ∈ Word 𝑅 ∧ ((#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → (𝑍 Σg 𝑟) = (𝑍 Σg 𝑈))
5024, 14, 26, 27, 29, 49psgnuni 17843 . . . . . . 7 ((((𝑟 ∈ Word 𝑅 ∧ ((#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → (-1↑(#‘𝑟)) = (-1↑(#‘𝑈)))
5123, 50eqtrd 2655 . . . . . 6 ((((𝑟 ∈ Word 𝑅 ∧ ((#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑈)) → (-1↑(#‘𝑊)) = (-1↑(#‘𝑈)))
5251ex 450 . . . . 5 (((𝑟 ∈ Word 𝑅 ∧ ((#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) ∧ (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅))) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(#‘𝑊)) = (-1↑(#‘𝑈))))
5352ex 450 . . . 4 ((𝑟 ∈ Word 𝑅 ∧ ((#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛)))) → ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅)) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(#‘𝑊)) = (-1↑(#‘𝑈)))))
5453rexlimiva 3021 . . 3 (∃𝑟 ∈ Word 𝑅((#‘𝑊) = (#‘𝑟) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(((𝑟𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑟𝑖)‘𝑛))) → ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅)) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(#‘𝑊)) = (-1↑(#‘𝑈)))))
5520, 54mpcom 38 . 2 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅)) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(#‘𝑊)) = (-1↑(#‘𝑈))))
5655ex 450 1 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(#‘𝑊)) = (-1↑(#‘𝑈)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  wrex 2908  {crab 2911  cdif 3553  {csn 4150  ran crn 5077  cres 5078  cfv 5849  (class class class)co 6607  Fincfn 7902  0cc0 9883  1c1 9884  -cneg 10214  ..^cfzo 12409  cexp 12803  #chash 13060  Word cword 13233  Basecbs 15784   Σg cgsu 16025  SymGrpcsymg 17721  pmTrspcpmtr 17785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-xor 1462  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-ot 4159  df-uni 4405  df-int 4443  df-iun 4489  df-iin 4490  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-se 5036  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-isom 5858  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-tpos 7300  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-2o 7509  df-oadd 7512  df-er 7690  df-map 7807  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-card 8712  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-4 11028  df-5 11029  df-6 11030  df-7 11031  df-8 11032  df-9 11033  df-n0 11240  df-xnn0 11311  df-z 11325  df-uz 11635  df-rp 11780  df-fz 12272  df-fzo 12410  df-seq 12745  df-exp 12804  df-hash 13061  df-word 13241  df-lsw 13242  df-concat 13243  df-s1 13244  df-substr 13245  df-splice 13246  df-reverse 13247  df-s2 13533  df-struct 15786  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-tset 15884  df-0g 16026  df-gsum 16027  df-mre 16170  df-mrc 16171  df-acs 16173  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-mhm 17259  df-submnd 17260  df-grp 17349  df-minusg 17350  df-subg 17515  df-ghm 17582  df-gim 17625  df-oppg 17700  df-symg 17722  df-pmtr 17786  df-psgn 17835
This theorem is referenced by:  psgndif  19870
  Copyright terms: Public domain W3C validator