Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnfieu Structured version   Visualization version   GIF version

Theorem psgnfieu 17984
 Description: A permutation of a finite set has exactly one parity. (Contributed by AV, 13-Jan-2019.)
Hypotheses
Ref Expression
psgnfitr.g 𝐺 = (SymGrp‘𝑁)
psgnfitr.p 𝐵 = (Base‘𝐺)
psgnfitr.t 𝑇 = ran (pmTrsp‘𝑁)
Assertion
Ref Expression
psgnfieu ((𝑁 ∈ Fin ∧ 𝑄𝐵) → ∃!𝑠𝑤 ∈ Word 𝑇(𝑄 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤))))
Distinct variable groups:   𝑤,𝐺   𝑤,𝑄   𝑤,𝑇   𝐺,𝑠   𝑁,𝑠,𝑤   𝑄,𝑠   𝑇,𝑠
Allowed substitution hints:   𝐵(𝑤,𝑠)

Proof of Theorem psgnfieu
StepHypRef Expression
1 simpr 476 . . 3 ((𝑁 ∈ Fin ∧ 𝑄𝐵) → 𝑄𝐵)
2 psgnfitr.g . . . 4 𝐺 = (SymGrp‘𝑁)
3 psgnfitr.p . . . 4 𝐵 = (Base‘𝐺)
42, 3sygbasnfpfi 17978 . . 3 ((𝑁 ∈ Fin ∧ 𝑄𝐵) → dom (𝑄 ∖ I ) ∈ Fin)
5 eqid 2651 . . . 4 (pmSgn‘𝑁) = (pmSgn‘𝑁)
62, 5, 3psgneldm 17969 . . 3 (𝑄 ∈ dom (pmSgn‘𝑁) ↔ (𝑄𝐵 ∧ dom (𝑄 ∖ I ) ∈ Fin))
71, 4, 6sylanbrc 699 . 2 ((𝑁 ∈ Fin ∧ 𝑄𝐵) → 𝑄 ∈ dom (pmSgn‘𝑁))
8 psgnfitr.t . . 3 𝑇 = ran (pmTrsp‘𝑁)
92, 8, 5psgneu 17972 . 2 (𝑄 ∈ dom (pmSgn‘𝑁) → ∃!𝑠𝑤 ∈ Word 𝑇(𝑄 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤))))
107, 9syl 17 1 ((𝑁 ∈ Fin ∧ 𝑄𝐵) → ∃!𝑠𝑤 ∈ Word 𝑇(𝑄 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∃!weu 2498  ∃wrex 2942   ∖ cdif 3604   I cid 5052  dom cdm 5143  ran crn 5144  ‘cfv 5926  (class class class)co 6690  Fincfn 7997  1c1 9975  -cneg 10305  ↑cexp 12900  #chash 13157  Word cword 13323  Basecbs 15904   Σg cgsu 16148  SymGrpcsymg 17843  pmTrspcpmtr 17907  pmSgncpsgn 17955 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-xor 1505  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-ot 4219  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-word 13331  df-lsw 13332  df-concat 13333  df-s1 13334  df-substr 13335  df-splice 13336  df-reverse 13337  df-s2 13639  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-tset 16007  df-0g 16149  df-gsum 16150  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-subg 17638  df-ghm 17705  df-gim 17748  df-oppg 17822  df-symg 17844  df-pmtr 17908  df-psgn 17957 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator