Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psgnfzto1st Structured version   Visualization version   GIF version

Theorem psgnfzto1st 30749
Description: The permutation sign for moving one element to the first position. (Contributed by Thierry Arnoux, 21-Aug-2020.)
Hypotheses
Ref Expression
psgnfzto1st.d 𝐷 = (1...𝑁)
psgnfzto1st.p 𝑃 = (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
psgnfzto1st.g 𝐺 = (SymGrp‘𝐷)
psgnfzto1st.b 𝐵 = (Base‘𝐺)
psgnfzto1st.s 𝑆 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnfzto1st (𝐼𝐷 → (𝑆𝑃) = (-1↑(𝐼 + 1)))
Distinct variable groups:   𝐷,𝑖   𝑖,𝐼   𝑖,𝑁   𝐵,𝑖
Allowed substitution hints:   𝑃(𝑖)   𝑆(𝑖)   𝐺(𝑖)

Proof of Theorem psgnfzto1st
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfz1b 12979 . . . . 5 (𝐼 ∈ (1...𝑁) ↔ (𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼𝑁))
21biimpi 218 . . . 4 (𝐼 ∈ (1...𝑁) → (𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼𝑁))
3 psgnfzto1st.d . . . 4 𝐷 = (1...𝑁)
42, 3eleq2s 2933 . . 3 (𝐼𝐷 → (𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼𝑁))
5 3ancoma 1094 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝑁) ↔ (𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼𝑁))
64, 5sylibr 236 . 2 (𝐼𝐷 → (𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝑁))
7 df-3an 1085 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝑁) ↔ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ) ∧ 𝐼𝑁))
8 breq1 5071 . . . . . 6 (𝑚 = 1 → (𝑚𝑁 ↔ 1 ≤ 𝑁))
9 id 22 . . . . . . . . . 10 (𝑚 = 1 → 𝑚 = 1)
10 breq2 5072 . . . . . . . . . . 11 (𝑚 = 1 → (𝑖𝑚𝑖 ≤ 1))
1110ifbid 4491 . . . . . . . . . 10 (𝑚 = 1 → if(𝑖𝑚, (𝑖 − 1), 𝑖) = if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))
129, 11ifeq12d 4489 . . . . . . . . 9 (𝑚 = 1 → if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)) = if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))
1312mpteq2dv 5164 . . . . . . . 8 (𝑚 = 1 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))))
1413fveq2d 6676 . . . . . . 7 (𝑚 = 1 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))))
15 oveq1 7165 . . . . . . . 8 (𝑚 = 1 → (𝑚 + 1) = (1 + 1))
1615oveq2d 7174 . . . . . . 7 (𝑚 = 1 → (-1↑(𝑚 + 1)) = (-1↑(1 + 1)))
1714, 16eqeq12d 2839 . . . . . 6 (𝑚 = 1 → ((𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1)) ↔ (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))) = (-1↑(1 + 1))))
188, 17imbi12d 347 . . . . 5 (𝑚 = 1 → ((𝑚𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1))) ↔ (1 ≤ 𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))) = (-1↑(1 + 1)))))
19 breq1 5071 . . . . . 6 (𝑚 = 𝑛 → (𝑚𝑁𝑛𝑁))
20 id 22 . . . . . . . . . 10 (𝑚 = 𝑛𝑚 = 𝑛)
21 breq2 5072 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑖𝑚𝑖𝑛))
2221ifbid 4491 . . . . . . . . . 10 (𝑚 = 𝑛 → if(𝑖𝑚, (𝑖 − 1), 𝑖) = if(𝑖𝑛, (𝑖 − 1), 𝑖))
2320, 22ifeq12d 4489 . . . . . . . . 9 (𝑚 = 𝑛 → if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)) = if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))
2423mpteq2dv 5164 . . . . . . . 8 (𝑚 = 𝑛 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))
2524fveq2d 6676 . . . . . . 7 (𝑚 = 𝑛 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))))
26 oveq1 7165 . . . . . . . 8 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
2726oveq2d 7174 . . . . . . 7 (𝑚 = 𝑛 → (-1↑(𝑚 + 1)) = (-1↑(𝑛 + 1)))
2825, 27eqeq12d 2839 . . . . . 6 (𝑚 = 𝑛 → ((𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1)) ↔ (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1))))
2919, 28imbi12d 347 . . . . 5 (𝑚 = 𝑛 → ((𝑚𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1))) ↔ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))))
30 breq1 5071 . . . . . 6 (𝑚 = (𝑛 + 1) → (𝑚𝑁 ↔ (𝑛 + 1) ≤ 𝑁))
31 id 22 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → 𝑚 = (𝑛 + 1))
32 breq2 5072 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (𝑖𝑚𝑖 ≤ (𝑛 + 1)))
3332ifbid 4491 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → if(𝑖𝑚, (𝑖 − 1), 𝑖) = if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))
3431, 33ifeq12d 4489 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)) = if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))
3534mpteq2dv 5164 . . . . . . . 8 (𝑚 = (𝑛 + 1) → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))))
3635fveq2d 6676 . . . . . . 7 (𝑚 = (𝑛 + 1) → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))))
37 oveq1 7165 . . . . . . . 8 (𝑚 = (𝑛 + 1) → (𝑚 + 1) = ((𝑛 + 1) + 1))
3837oveq2d 7174 . . . . . . 7 (𝑚 = (𝑛 + 1) → (-1↑(𝑚 + 1)) = (-1↑((𝑛 + 1) + 1)))
3936, 38eqeq12d 2839 . . . . . 6 (𝑚 = (𝑛 + 1) → ((𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1)) ↔ (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))) = (-1↑((𝑛 + 1) + 1))))
4030, 39imbi12d 347 . . . . 5 (𝑚 = (𝑛 + 1) → ((𝑚𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1))) ↔ ((𝑛 + 1) ≤ 𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))) = (-1↑((𝑛 + 1) + 1)))))
41 breq1 5071 . . . . . 6 (𝑚 = 𝐼 → (𝑚𝑁𝐼𝑁))
42 id 22 . . . . . . . . . . 11 (𝑚 = 𝐼𝑚 = 𝐼)
43 breq2 5072 . . . . . . . . . . . 12 (𝑚 = 𝐼 → (𝑖𝑚𝑖𝐼))
4443ifbid 4491 . . . . . . . . . . 11 (𝑚 = 𝐼 → if(𝑖𝑚, (𝑖 − 1), 𝑖) = if(𝑖𝐼, (𝑖 − 1), 𝑖))
4542, 44ifeq12d 4489 . . . . . . . . . 10 (𝑚 = 𝐼 → if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)) = if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
4645mpteq2dv 5164 . . . . . . . . 9 (𝑚 = 𝐼 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖))))
47 psgnfzto1st.p . . . . . . . . 9 𝑃 = (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
4846, 47syl6eqr 2876 . . . . . . . 8 (𝑚 = 𝐼 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) = 𝑃)
4948fveq2d 6676 . . . . . . 7 (𝑚 = 𝐼 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (𝑆𝑃))
50 oveq1 7165 . . . . . . . 8 (𝑚 = 𝐼 → (𝑚 + 1) = (𝐼 + 1))
5150oveq2d 7174 . . . . . . 7 (𝑚 = 𝐼 → (-1↑(𝑚 + 1)) = (-1↑(𝐼 + 1)))
5249, 51eqeq12d 2839 . . . . . 6 (𝑚 = 𝐼 → ((𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1)) ↔ (𝑆𝑃) = (-1↑(𝐼 + 1))))
5341, 52imbi12d 347 . . . . 5 (𝑚 = 𝐼 → ((𝑚𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1))) ↔ (𝐼𝑁 → (𝑆𝑃) = (-1↑(𝐼 + 1)))))
54 fzfi 13343 . . . . . . . . 9 (1...𝑁) ∈ Fin
553, 54eqeltri 2911 . . . . . . . 8 𝐷 ∈ Fin
56 psgnfzto1st.s . . . . . . . . 9 𝑆 = (pmSgn‘𝐷)
5756psgnid 30741 . . . . . . . 8 (𝐷 ∈ Fin → (𝑆‘( I ↾ 𝐷)) = 1)
5855, 57ax-mp 5 . . . . . . 7 (𝑆‘( I ↾ 𝐷)) = 1
59 eqid 2823 . . . . . . . . 9 1 = 1
60 eqid 2823 . . . . . . . . . 10 (𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))
613, 60fzto1st1 30746 . . . . . . . . 9 (1 = 1 → (𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))) = ( I ↾ 𝐷))
6259, 61ax-mp 5 . . . . . . . 8 (𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))) = ( I ↾ 𝐷)
6362fveq2i 6675 . . . . . . 7 (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))) = (𝑆‘( I ↾ 𝐷))
64 1p1e2 11765 . . . . . . . . 9 (1 + 1) = 2
6564oveq2i 7169 . . . . . . . 8 (-1↑(1 + 1)) = (-1↑2)
66 neg1sqe1 13562 . . . . . . . 8 (-1↑2) = 1
6765, 66eqtri 2846 . . . . . . 7 (-1↑(1 + 1)) = 1
6858, 63, 673eqtr4i 2856 . . . . . 6 (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))) = (-1↑(1 + 1))
69682a1i 12 . . . . 5 (𝑁 ∈ ℕ → (1 ≤ 𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))) = (-1↑(1 + 1))))
70 simplr 767 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ∈ ℕ)
7170peano2nnd 11657 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ∈ ℕ)
72 simpll 765 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑁 ∈ ℕ)
73 simpr 487 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ≤ 𝑁)
7471, 72, 733jca 1124 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → ((𝑛 + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑛 + 1) ≤ 𝑁))
75 elfz1b 12979 . . . . . . . . . . . 12 ((𝑛 + 1) ∈ (1...𝑁) ↔ ((𝑛 + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑛 + 1) ≤ 𝑁))
7674, 75sylibr 236 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ∈ (1...𝑁))
7776, 3eleqtrrdi 2926 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ∈ 𝐷)
783psgnfzto1stlem 30744 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ 𝐷) → (𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) = (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))))
7970, 77, 78syl2anc 586 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) = (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))))
8079adantlr 713 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) = (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))))
8180fveq2d 6676 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))) = (𝑆‘(((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))))
8255a1i 11 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → 𝐷 ∈ Fin)
83 eqid 2823 . . . . . . . . . 10 ran (pmTrsp‘𝐷) = ran (pmTrsp‘𝐷)
84 psgnfzto1st.g . . . . . . . . . 10 𝐺 = (SymGrp‘𝐷)
85 psgnfzto1st.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
8683, 84, 85symgtrf 18599 . . . . . . . . 9 ran (pmTrsp‘𝐷) ⊆ 𝐵
87 eqid 2823 . . . . . . . . . . . 12 (pmTrsp‘𝐷) = (pmTrsp‘𝐷)
883, 87pmtrto1cl 30743 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ 𝐷) → ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ ran (pmTrsp‘𝐷))
8970, 77, 88syl2anc 586 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ ran (pmTrsp‘𝐷))
9089adantlr 713 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ ran (pmTrsp‘𝐷))
9186, 90sseldi 3967 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ 𝐵)
9270nnred 11655 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ∈ ℝ)
93 1red 10644 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 1 ∈ ℝ)
9492, 93readdcld 10672 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ∈ ℝ)
9572nnred 11655 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑁 ∈ ℝ)
9692lep1d 11573 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ≤ (𝑛 + 1))
9792, 94, 95, 96, 73letrd 10799 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛𝑁)
9870, 72, 973jca 1124 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑛𝑁))
99 elfz1b 12979 . . . . . . . . . . . 12 (𝑛 ∈ (1...𝑁) ↔ (𝑛 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑛𝑁))
10098, 99sylibr 236 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ∈ (1...𝑁))
101100, 3eleqtrrdi 2926 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛𝐷)
102101adantlr 713 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛𝐷)
103 eqid 2823 . . . . . . . . . 10 (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))
1043, 103, 84, 85fzto1st 30747 . . . . . . . . 9 (𝑛𝐷 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)
105102, 104syl 17 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)
10684, 56, 85psgnco 20729 . . . . . . . 8 ((𝐷 ∈ Fin ∧ ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ 𝐵 ∧ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵) → (𝑆‘(((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))) = ((𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) · (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))))
10782, 91, 105, 106syl3anc 1367 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘(((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))) = ((𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) · (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))))
10884, 83, 56psgnpmtr 18640 . . . . . . . . . . 11 (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ ran (pmTrsp‘𝐷) → (𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) = -1)
10989, 108syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) = -1)
110109adantlr 713 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) = -1)
11197adantlr 713 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛𝑁)
112 simplr 767 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1))))
113111, 112mpd 15 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))
114110, 113oveq12d 7176 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → ((𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) · (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))) = (-1 · (-1↑(𝑛 + 1))))
115 neg1cn 11754 . . . . . . . . . . 11 -1 ∈ ℂ
116 peano2nn 11652 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
117116nnnn0d 11958 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ0)
118 expp1 13439 . . . . . . . . . . 11 ((-1 ∈ ℂ ∧ (𝑛 + 1) ∈ ℕ0) → (-1↑((𝑛 + 1) + 1)) = ((-1↑(𝑛 + 1)) · -1))
119115, 117, 118sylancr 589 . . . . . . . . . 10 (𝑛 ∈ ℕ → (-1↑((𝑛 + 1) + 1)) = ((-1↑(𝑛 + 1)) · -1))
120115a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → -1 ∈ ℂ)
121120, 117expcld 13513 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (-1↑(𝑛 + 1)) ∈ ℂ)
122121, 120mulcomd 10664 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((-1↑(𝑛 + 1)) · -1) = (-1 · (-1↑(𝑛 + 1))))
123119, 122eqtr2d 2859 . . . . . . . . 9 (𝑛 ∈ ℕ → (-1 · (-1↑(𝑛 + 1))) = (-1↑((𝑛 + 1) + 1)))
124123ad3antlr 729 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (-1 · (-1↑(𝑛 + 1))) = (-1↑((𝑛 + 1) + 1)))
125114, 124eqtrd 2858 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → ((𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) · (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))) = (-1↑((𝑛 + 1) + 1)))
12681, 107, 1253eqtrd 2862 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))) = (-1↑((𝑛 + 1) + 1)))
127126ex 415 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) → ((𝑛 + 1) ≤ 𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))) = (-1↑((𝑛 + 1) + 1))))
12818, 29, 40, 53, 69, 127nnindd 11660 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ) → (𝐼𝑁 → (𝑆𝑃) = (-1↑(𝐼 + 1))))
129128imp 409 . . 3 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ) ∧ 𝐼𝑁) → (𝑆𝑃) = (-1↑(𝐼 + 1)))
1307, 129sylbi 219 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝑁) → (𝑆𝑃) = (-1↑(𝐼 + 1)))
1316, 130syl 17 1 (𝐼𝐷 → (𝑆𝑃) = (-1↑(𝐼 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  ifcif 4469  {cpr 4571   class class class wbr 5068  cmpt 5148   I cid 5461  ran crn 5558  cres 5559  ccom 5561  cfv 6357  (class class class)co 7158  Fincfn 8511  cc 10537  1c1 10540   + caddc 10542   · cmul 10544  cle 10678  cmin 10872  -cneg 10873  cn 11640  2c2 11695  0cn0 11900  ...cfz 12895  cexp 13432  Basecbs 16485  SymGrpcsymg 18497  pmTrspcpmtr 18571  pmSgncpsgn 18619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-xor 1502  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-ot 4578  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-xnn0 11971  df-z 11985  df-dec 12102  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-word 13865  df-lsw 13917  df-concat 13925  df-s1 13952  df-substr 14005  df-pfx 14035  df-splice 14114  df-reverse 14123  df-s2 14212  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-0g 16717  df-gsum 16718  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-efmnd 18036  df-grp 18108  df-minusg 18109  df-subg 18278  df-ghm 18358  df-gim 18401  df-oppg 18476  df-symg 18498  df-pmtr 18572  df-psgn 18621  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-dvr 19435  df-drng 19506  df-cnfld 20548
This theorem is referenced by:  madjusmdetlem4  31097
  Copyright terms: Public domain W3C validator