MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnuni Structured version   Visualization version   GIF version

Theorem psgnuni 18556
Description: If the same permutation can be written in more than one way as a product of transpositions, the parity of those products must agree; otherwise the product of one with the inverse of the other would be an odd representation of the identity. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Hypotheses
Ref Expression
psgnuni.g 𝐺 = (SymGrp‘𝐷)
psgnuni.t 𝑇 = ran (pmTrsp‘𝐷)
psgnuni.d (𝜑𝐷𝑉)
psgnuni.w (𝜑𝑊 ∈ Word 𝑇)
psgnuni.x (𝜑𝑋 ∈ Word 𝑇)
psgnuni.e (𝜑 → (𝐺 Σg 𝑊) = (𝐺 Σg 𝑋))
Assertion
Ref Expression
psgnuni (𝜑 → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑋)))

Proof of Theorem psgnuni
StepHypRef Expression
1 psgnuni.w . . . . . 6 (𝜑𝑊 ∈ Word 𝑇)
2 lencl 13871 . . . . . 6 (𝑊 ∈ Word 𝑇 → (♯‘𝑊) ∈ ℕ0)
31, 2syl 17 . . . . 5 (𝜑 → (♯‘𝑊) ∈ ℕ0)
43nn0zd 12073 . . . 4 (𝜑 → (♯‘𝑊) ∈ ℤ)
5 m1expcl 13440 . . . 4 ((♯‘𝑊) ∈ ℤ → (-1↑(♯‘𝑊)) ∈ ℤ)
64, 5syl 17 . . 3 (𝜑 → (-1↑(♯‘𝑊)) ∈ ℤ)
76zcnd 12076 . 2 (𝜑 → (-1↑(♯‘𝑊)) ∈ ℂ)
8 psgnuni.x . . . . . 6 (𝜑𝑋 ∈ Word 𝑇)
9 lencl 13871 . . . . . 6 (𝑋 ∈ Word 𝑇 → (♯‘𝑋) ∈ ℕ0)
108, 9syl 17 . . . . 5 (𝜑 → (♯‘𝑋) ∈ ℕ0)
1110nn0zd 12073 . . . 4 (𝜑 → (♯‘𝑋) ∈ ℤ)
12 m1expcl 13440 . . . 4 ((♯‘𝑋) ∈ ℤ → (-1↑(♯‘𝑋)) ∈ ℤ)
1311, 12syl 17 . . 3 (𝜑 → (-1↑(♯‘𝑋)) ∈ ℤ)
1413zcnd 12076 . 2 (𝜑 → (-1↑(♯‘𝑋)) ∈ ℂ)
15 neg1cn 11739 . . 3 -1 ∈ ℂ
16 neg1ne0 11741 . . 3 -1 ≠ 0
17 expne0i 13449 . . 3 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ (♯‘𝑋) ∈ ℤ) → (-1↑(♯‘𝑋)) ≠ 0)
1815, 16, 11, 17mp3an12i 1456 . 2 (𝜑 → (-1↑(♯‘𝑋)) ≠ 0)
19 m1expaddsub 18555 . . . 4 (((♯‘𝑊) ∈ ℤ ∧ (♯‘𝑋) ∈ ℤ) → (-1↑((♯‘𝑊) − (♯‘𝑋))) = (-1↑((♯‘𝑊) + (♯‘𝑋))))
204, 11, 19syl2anc 584 . . 3 (𝜑 → (-1↑((♯‘𝑊) − (♯‘𝑋))) = (-1↑((♯‘𝑊) + (♯‘𝑋))))
21 expsub 13465 . . . . 5 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ ((♯‘𝑊) ∈ ℤ ∧ (♯‘𝑋) ∈ ℤ)) → (-1↑((♯‘𝑊) − (♯‘𝑋))) = ((-1↑(♯‘𝑊)) / (-1↑(♯‘𝑋))))
2215, 16, 21mpanl12 698 . . . 4 (((♯‘𝑊) ∈ ℤ ∧ (♯‘𝑋) ∈ ℤ) → (-1↑((♯‘𝑊) − (♯‘𝑋))) = ((-1↑(♯‘𝑊)) / (-1↑(♯‘𝑋))))
234, 11, 22syl2anc 584 . . 3 (𝜑 → (-1↑((♯‘𝑊) − (♯‘𝑋))) = ((-1↑(♯‘𝑊)) / (-1↑(♯‘𝑋))))
24 revcl 14111 . . . . . . . 8 (𝑋 ∈ Word 𝑇 → (reverse‘𝑋) ∈ Word 𝑇)
258, 24syl 17 . . . . . . 7 (𝜑 → (reverse‘𝑋) ∈ Word 𝑇)
26 ccatlen 13915 . . . . . . 7 ((𝑊 ∈ Word 𝑇 ∧ (reverse‘𝑋) ∈ Word 𝑇) → (♯‘(𝑊 ++ (reverse‘𝑋))) = ((♯‘𝑊) + (♯‘(reverse‘𝑋))))
271, 25, 26syl2anc 584 . . . . . 6 (𝜑 → (♯‘(𝑊 ++ (reverse‘𝑋))) = ((♯‘𝑊) + (♯‘(reverse‘𝑋))))
28 revlen 14112 . . . . . . . 8 (𝑋 ∈ Word 𝑇 → (♯‘(reverse‘𝑋)) = (♯‘𝑋))
298, 28syl 17 . . . . . . 7 (𝜑 → (♯‘(reverse‘𝑋)) = (♯‘𝑋))
3029oveq2d 7161 . . . . . 6 (𝜑 → ((♯‘𝑊) + (♯‘(reverse‘𝑋))) = ((♯‘𝑊) + (♯‘𝑋)))
3127, 30eqtr2d 2854 . . . . 5 (𝜑 → ((♯‘𝑊) + (♯‘𝑋)) = (♯‘(𝑊 ++ (reverse‘𝑋))))
3231oveq2d 7161 . . . 4 (𝜑 → (-1↑((♯‘𝑊) + (♯‘𝑋))) = (-1↑(♯‘(𝑊 ++ (reverse‘𝑋)))))
33 psgnuni.g . . . . 5 𝐺 = (SymGrp‘𝐷)
34 psgnuni.t . . . . 5 𝑇 = ran (pmTrsp‘𝐷)
35 psgnuni.d . . . . 5 (𝜑𝐷𝑉)
36 ccatcl 13914 . . . . . 6 ((𝑊 ∈ Word 𝑇 ∧ (reverse‘𝑋) ∈ Word 𝑇) → (𝑊 ++ (reverse‘𝑋)) ∈ Word 𝑇)
371, 25, 36syl2anc 584 . . . . 5 (𝜑 → (𝑊 ++ (reverse‘𝑋)) ∈ Word 𝑇)
38 psgnuni.e . . . . . . . . . 10 (𝜑 → (𝐺 Σg 𝑊) = (𝐺 Σg 𝑋))
3938fveq2d 6667 . . . . . . . . 9 (𝜑 → ((invg𝐺)‘(𝐺 Σg 𝑊)) = ((invg𝐺)‘(𝐺 Σg 𝑋)))
40 eqid 2818 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
4134, 33, 40symgtrinv 18529 . . . . . . . . . 10 ((𝐷𝑉𝑋 ∈ Word 𝑇) → ((invg𝐺)‘(𝐺 Σg 𝑋)) = (𝐺 Σg (reverse‘𝑋)))
4235, 8, 41syl2anc 584 . . . . . . . . 9 (𝜑 → ((invg𝐺)‘(𝐺 Σg 𝑋)) = (𝐺 Σg (reverse‘𝑋)))
4339, 42eqtr2d 2854 . . . . . . . 8 (𝜑 → (𝐺 Σg (reverse‘𝑋)) = ((invg𝐺)‘(𝐺 Σg 𝑊)))
4443oveq2d 7161 . . . . . . 7 (𝜑 → ((𝐺 Σg 𝑊)(+g𝐺)(𝐺 Σg (reverse‘𝑋))) = ((𝐺 Σg 𝑊)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝑊))))
4533symggrp 18458 . . . . . . . . 9 (𝐷𝑉𝐺 ∈ Grp)
4635, 45syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Grp)
47 grpmnd 18048 . . . . . . . . . 10 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
4835, 45, 473syl 18 . . . . . . . . 9 (𝜑𝐺 ∈ Mnd)
49 eqid 2818 . . . . . . . . . . . 12 (Base‘𝐺) = (Base‘𝐺)
5034, 33, 49symgtrf 18526 . . . . . . . . . . 11 𝑇 ⊆ (Base‘𝐺)
51 sswrd 13857 . . . . . . . . . . 11 (𝑇 ⊆ (Base‘𝐺) → Word 𝑇 ⊆ Word (Base‘𝐺))
5250, 51ax-mp 5 . . . . . . . . . 10 Word 𝑇 ⊆ Word (Base‘𝐺)
5352, 1sseldi 3962 . . . . . . . . 9 (𝜑𝑊 ∈ Word (Base‘𝐺))
5449gsumwcl 17991 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word (Base‘𝐺)) → (𝐺 Σg 𝑊) ∈ (Base‘𝐺))
5548, 53, 54syl2anc 584 . . . . . . . 8 (𝜑 → (𝐺 Σg 𝑊) ∈ (Base‘𝐺))
56 eqid 2818 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
57 eqid 2818 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
5849, 56, 57, 40grprinv 18091 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝐺 Σg 𝑊) ∈ (Base‘𝐺)) → ((𝐺 Σg 𝑊)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝑊))) = (0g𝐺))
5946, 55, 58syl2anc 584 . . . . . . 7 (𝜑 → ((𝐺 Σg 𝑊)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝑊))) = (0g𝐺))
6044, 59eqtrd 2853 . . . . . 6 (𝜑 → ((𝐺 Σg 𝑊)(+g𝐺)(𝐺 Σg (reverse‘𝑋))) = (0g𝐺))
6152, 25sseldi 3962 . . . . . . 7 (𝜑 → (reverse‘𝑋) ∈ Word (Base‘𝐺))
6249, 56gsumccat 17994 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word (Base‘𝐺) ∧ (reverse‘𝑋) ∈ Word (Base‘𝐺)) → (𝐺 Σg (𝑊 ++ (reverse‘𝑋))) = ((𝐺 Σg 𝑊)(+g𝐺)(𝐺 Σg (reverse‘𝑋))))
6348, 53, 61, 62syl3anc 1363 . . . . . 6 (𝜑 → (𝐺 Σg (𝑊 ++ (reverse‘𝑋))) = ((𝐺 Σg 𝑊)(+g𝐺)(𝐺 Σg (reverse‘𝑋))))
6433symgid 18459 . . . . . . 7 (𝐷𝑉 → ( I ↾ 𝐷) = (0g𝐺))
6535, 64syl 17 . . . . . 6 (𝜑 → ( I ↾ 𝐷) = (0g𝐺))
6660, 63, 653eqtr4d 2863 . . . . 5 (𝜑 → (𝐺 Σg (𝑊 ++ (reverse‘𝑋))) = ( I ↾ 𝐷))
6733, 34, 35, 37, 66psgnunilem4 18554 . . . 4 (𝜑 → (-1↑(♯‘(𝑊 ++ (reverse‘𝑋)))) = 1)
6832, 67eqtrd 2853 . . 3 (𝜑 → (-1↑((♯‘𝑊) + (♯‘𝑋))) = 1)
6920, 23, 683eqtr3d 2861 . 2 (𝜑 → ((-1↑(♯‘𝑊)) / (-1↑(♯‘𝑋))) = 1)
707, 14, 18, 69diveq1d 11412 1 (𝜑 → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wne 3013  wss 3933   I cid 5452  ran crn 5549  cres 5550  cfv 6348  (class class class)co 7145  cc 10523  0cc0 10525  1c1 10526   + caddc 10528  cmin 10858  -cneg 10859   / cdiv 11285  0cn0 11885  cz 11969  cexp 13417  chash 13678  Word cword 13849   ++ cconcat 13910  reversecreverse 14108  Basecbs 16471  +gcplusg 16553  0gc0g 16701   Σg cgsu 16702  Mndcmnd 17899  Grpcgrp 18041  invgcminusg 18042  SymGrpcsymg 18433  pmTrspcpmtr 18498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-xor 1496  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-ot 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-fzo 13022  df-seq 13358  df-exp 13418  df-hash 13679  df-word 13850  df-lsw 13903  df-concat 13911  df-s1 13938  df-substr 13991  df-pfx 14021  df-splice 14100  df-reverse 14109  df-s2 14198  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-tset 16572  df-0g 16703  df-gsum 16704  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mhm 17944  df-submnd 17945  df-grp 18044  df-minusg 18045  df-subg 18214  df-ghm 18294  df-gim 18337  df-oppg 18412  df-symg 18434  df-pmtr 18499
This theorem is referenced by:  psgneu  18563  psgndiflemA  20673
  Copyright terms: Public domain W3C validator