MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnunilem5 Structured version   Visualization version   GIF version

Theorem psgnunilem5 18616
Description: Lemma for psgnuni 18621. It is impossible to shift a transposition off the end because if the active transposition is at the right end, it is the only transposition moving 𝐴 in contradiction to this being a representation of the identity. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Proof shortened by AV, 12-Oct-2022.)
Hypotheses
Ref Expression
psgnunilem2.g 𝐺 = (SymGrp‘𝐷)
psgnunilem2.t 𝑇 = ran (pmTrsp‘𝐷)
psgnunilem2.d (𝜑𝐷𝑉)
psgnunilem2.w (𝜑𝑊 ∈ Word 𝑇)
psgnunilem2.id (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
psgnunilem2.l (𝜑 → (♯‘𝑊) = 𝐿)
psgnunilem2.ix (𝜑𝐼 ∈ (0..^𝐿))
psgnunilem2.a (𝜑𝐴 ∈ dom ((𝑊𝐼) ∖ I ))
psgnunilem2.al (𝜑 → ∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ))
Assertion
Ref Expression
psgnunilem5 (𝜑 → (𝐼 + 1) ∈ (0..^𝐿))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐺   𝑘,𝐼   𝑘,𝑊
Allowed substitution hints:   𝜑(𝑘)   𝐷(𝑘)   𝑇(𝑘)   𝐿(𝑘)   𝑉(𝑘)

Proof of Theorem psgnunilem5
Dummy variables 𝑗 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 4295 . . . 4 ¬ 𝐴 ∈ ∅
2 psgnunilem2.id . . . . . . . 8 (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
32difeq1d 4097 . . . . . . 7 (𝜑 → ((𝐺 Σg 𝑊) ∖ I ) = (( I ↾ 𝐷) ∖ I ))
43dmeqd 5768 . . . . . 6 (𝜑 → dom ((𝐺 Σg 𝑊) ∖ I ) = dom (( I ↾ 𝐷) ∖ I ))
5 resss 5872 . . . . . . . . 9 ( I ↾ 𝐷) ⊆ I
6 ssdif0 4322 . . . . . . . . 9 (( I ↾ 𝐷) ⊆ I ↔ (( I ↾ 𝐷) ∖ I ) = ∅)
75, 6mpbi 232 . . . . . . . 8 (( I ↾ 𝐷) ∖ I ) = ∅
87dmeqi 5767 . . . . . . 7 dom (( I ↾ 𝐷) ∖ I ) = dom ∅
9 dm0 5784 . . . . . . 7 dom ∅ = ∅
108, 9eqtri 2844 . . . . . 6 dom (( I ↾ 𝐷) ∖ I ) = ∅
114, 10syl6eq 2872 . . . . 5 (𝜑 → dom ((𝐺 Σg 𝑊) ∖ I ) = ∅)
1211eleq2d 2898 . . . 4 (𝜑 → (𝐴 ∈ dom ((𝐺 Σg 𝑊) ∖ I ) ↔ 𝐴 ∈ ∅))
131, 12mtbiri 329 . . 3 (𝜑 → ¬ 𝐴 ∈ dom ((𝐺 Σg 𝑊) ∖ I ))
14 psgnunilem2.d . . . . . . . . 9 (𝜑𝐷𝑉)
15 psgnunilem2.g . . . . . . . . . 10 𝐺 = (SymGrp‘𝐷)
1615symggrp 18522 . . . . . . . . 9 (𝐷𝑉𝐺 ∈ Grp)
17 grpmnd 18104 . . . . . . . . 9 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
1814, 16, 173syl 18 . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
19 psgnunilem2.t . . . . . . . . . . . 12 𝑇 = ran (pmTrsp‘𝐷)
20 eqid 2821 . . . . . . . . . . . 12 (Base‘𝐺) = (Base‘𝐺)
2119, 15, 20symgtrf 18591 . . . . . . . . . . 11 𝑇 ⊆ (Base‘𝐺)
22 sswrd 13863 . . . . . . . . . . 11 (𝑇 ⊆ (Base‘𝐺) → Word 𝑇 ⊆ Word (Base‘𝐺))
2321, 22mp1i 13 . . . . . . . . . 10 (𝜑 → Word 𝑇 ⊆ Word (Base‘𝐺))
24 psgnunilem2.w . . . . . . . . . 10 (𝜑𝑊 ∈ Word 𝑇)
2523, 24sseldd 3967 . . . . . . . . 9 (𝜑𝑊 ∈ Word (Base‘𝐺))
26 pfxcl 14033 . . . . . . . . 9 (𝑊 ∈ Word (Base‘𝐺) → (𝑊 prefix 𝐼) ∈ Word (Base‘𝐺))
2725, 26syl 17 . . . . . . . 8 (𝜑 → (𝑊 prefix 𝐼) ∈ Word (Base‘𝐺))
2820gsumwcl 17997 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑊 prefix 𝐼) ∈ Word (Base‘𝐺)) → (𝐺 Σg (𝑊 prefix 𝐼)) ∈ (Base‘𝐺))
2918, 27, 28syl2anc 586 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑊 prefix 𝐼)) ∈ (Base‘𝐺))
3015, 20symgbasf1o 18497 . . . . . . 7 ((𝐺 Σg (𝑊 prefix 𝐼)) ∈ (Base‘𝐺) → (𝐺 Σg (𝑊 prefix 𝐼)):𝐷1-1-onto𝐷)
3129, 30syl 17 . . . . . 6 (𝜑 → (𝐺 Σg (𝑊 prefix 𝐼)):𝐷1-1-onto𝐷)
3231adantr 483 . . . . 5 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg (𝑊 prefix 𝐼)):𝐷1-1-onto𝐷)
33 wrdf 13860 . . . . . . . . . 10 (𝑊 ∈ Word 𝑇𝑊:(0..^(♯‘𝑊))⟶𝑇)
3424, 33syl 17 . . . . . . . . 9 (𝜑𝑊:(0..^(♯‘𝑊))⟶𝑇)
35 psgnunilem2.ix . . . . . . . . . 10 (𝜑𝐼 ∈ (0..^𝐿))
36 psgnunilem2.l . . . . . . . . . . 11 (𝜑 → (♯‘𝑊) = 𝐿)
3736oveq2d 7166 . . . . . . . . . 10 (𝜑 → (0..^(♯‘𝑊)) = (0..^𝐿))
3835, 37eleqtrrd 2916 . . . . . . . . 9 (𝜑𝐼 ∈ (0..^(♯‘𝑊)))
3934, 38ffvelrnd 6846 . . . . . . . 8 (𝜑 → (𝑊𝐼) ∈ 𝑇)
4021, 39sseldi 3964 . . . . . . 7 (𝜑 → (𝑊𝐼) ∈ (Base‘𝐺))
4115, 20symgbasf1o 18497 . . . . . . 7 ((𝑊𝐼) ∈ (Base‘𝐺) → (𝑊𝐼):𝐷1-1-onto𝐷)
4240, 41syl 17 . . . . . 6 (𝜑 → (𝑊𝐼):𝐷1-1-onto𝐷)
4342adantr 483 . . . . 5 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝑊𝐼):𝐷1-1-onto𝐷)
4415, 20symgsssg 18589 . . . . . . . . . . 11 (𝐷𝑉 → {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubGrp‘𝐺))
45 subgsubm 18295 . . . . . . . . . . 11 ({𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubGrp‘𝐺) → {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubMnd‘𝐺))
4614, 44, 453syl 18 . . . . . . . . . 10 (𝜑 → {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubMnd‘𝐺))
47 fzossfz 13050 . . . . . . . . . . . . . . . 16 (0..^𝐿) ⊆ (0...𝐿)
4847, 35sseldi 3964 . . . . . . . . . . . . . . 15 (𝜑𝐼 ∈ (0...𝐿))
4936oveq2d 7166 . . . . . . . . . . . . . . 15 (𝜑 → (0...(♯‘𝑊)) = (0...𝐿))
5048, 49eleqtrrd 2916 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ (0...(♯‘𝑊)))
51 pfxmpt 14034 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑇𝐼 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝐼) = (𝑠 ∈ (0..^𝐼) ↦ (𝑊𝑠)))
5224, 50, 51syl2anc 586 . . . . . . . . . . . . 13 (𝜑 → (𝑊 prefix 𝐼) = (𝑠 ∈ (0..^𝐼) ↦ (𝑊𝑠)))
53 difeq1 4091 . . . . . . . . . . . . . . . . 17 (𝑗 = (𝑊𝑠) → (𝑗 ∖ I ) = ((𝑊𝑠) ∖ I ))
5453dmeqd 5768 . . . . . . . . . . . . . . . 16 (𝑗 = (𝑊𝑠) → dom (𝑗 ∖ I ) = dom ((𝑊𝑠) ∖ I ))
5554sseq1d 3997 . . . . . . . . . . . . . . 15 (𝑗 = (𝑊𝑠) → (dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴}) ↔ dom ((𝑊𝑠) ∖ I ) ⊆ (V ∖ {𝐴})))
56 disj2 4406 . . . . . . . . . . . . . . . 16 ((dom ((𝑊𝑠) ∖ I ) ∩ {𝐴}) = ∅ ↔ dom ((𝑊𝑠) ∖ I ) ⊆ (V ∖ {𝐴}))
57 disjsn 4640 . . . . . . . . . . . . . . . 16 ((dom ((𝑊𝑠) ∖ I ) ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I ))
5856, 57bitr3i 279 . . . . . . . . . . . . . . 15 (dom ((𝑊𝑠) ∖ I ) ⊆ (V ∖ {𝐴}) ↔ ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I ))
5955, 58syl6bb 289 . . . . . . . . . . . . . 14 (𝑗 = (𝑊𝑠) → (dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴}) ↔ ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I )))
60 elfzuz3 12899 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ (0...𝐿) → 𝐿 ∈ (ℤ𝐼))
6148, 60syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐿 ∈ (ℤ𝐼))
6236, 61eqeltrd 2913 . . . . . . . . . . . . . . . . 17 (𝜑 → (♯‘𝑊) ∈ (ℤ𝐼))
63 fzoss2 13059 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) ∈ (ℤ𝐼) → (0..^𝐼) ⊆ (0..^(♯‘𝑊)))
6462, 63syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (0..^𝐼) ⊆ (0..^(♯‘𝑊)))
6564sselda 3966 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (0..^𝐼)) → 𝑠 ∈ (0..^(♯‘𝑊)))
6634ffvelrnda 6845 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (0..^(♯‘𝑊))) → (𝑊𝑠) ∈ 𝑇)
6721, 66sseldi 3964 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (0..^(♯‘𝑊))) → (𝑊𝑠) ∈ (Base‘𝐺))
6865, 67syldan 593 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (0..^𝐼)) → (𝑊𝑠) ∈ (Base‘𝐺))
69 psgnunilem2.al . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ))
70 fveq2 6664 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑠 → (𝑊𝑘) = (𝑊𝑠))
7170difeq1d 4097 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑠 → ((𝑊𝑘) ∖ I ) = ((𝑊𝑠) ∖ I ))
7271dmeqd 5768 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑠 → dom ((𝑊𝑘) ∖ I ) = dom ((𝑊𝑠) ∖ I ))
7372eleq2d 2898 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑠 → (𝐴 ∈ dom ((𝑊𝑘) ∖ I ) ↔ 𝐴 ∈ dom ((𝑊𝑠) ∖ I )))
7473notbid 320 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑠 → (¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ) ↔ ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I )))
7574cbvralvw 3449 . . . . . . . . . . . . . . . 16 (∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ) ↔ ∀𝑠 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I ))
7669, 75sylib 220 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑠 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I ))
7776r19.21bi 3208 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (0..^𝐼)) → ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I ))
7859, 68, 77elrabd 3681 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (0..^𝐼)) → (𝑊𝑠) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
7952, 78fmpt3d 6874 . . . . . . . . . . . 12 (𝜑 → (𝑊 prefix 𝐼):(0..^𝐼)⟶{𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
8079adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝑊 prefix 𝐼):(0..^𝐼)⟶{𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
81 iswrdi 13859 . . . . . . . . . . 11 ((𝑊 prefix 𝐼):(0..^𝐼)⟶{𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} → (𝑊 prefix 𝐼) ∈ Word {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
8280, 81syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝑊 prefix 𝐼) ∈ Word {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
83 gsumwsubmcl 17995 . . . . . . . . . 10 (({𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubMnd‘𝐺) ∧ (𝑊 prefix 𝐼) ∈ Word {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})}) → (𝐺 Σg (𝑊 prefix 𝐼)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
8446, 82, 83syl2an2r 683 . . . . . . . . 9 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg (𝑊 prefix 𝐼)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
85 difeq1 4091 . . . . . . . . . . . . . 14 (𝑗 = (𝐺 Σg (𝑊 prefix 𝐼)) → (𝑗 ∖ I ) = ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ))
8685dmeqd 5768 . . . . . . . . . . . . 13 (𝑗 = (𝐺 Σg (𝑊 prefix 𝐼)) → dom (𝑗 ∖ I ) = dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ))
8786sseq1d 3997 . . . . . . . . . . . 12 (𝑗 = (𝐺 Σg (𝑊 prefix 𝐼)) → (dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴}) ↔ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ⊆ (V ∖ {𝐴})))
8887elrab 3679 . . . . . . . . . . 11 ((𝐺 Σg (𝑊 prefix 𝐼)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ↔ ((𝐺 Σg (𝑊 prefix 𝐼)) ∈ (Base‘𝐺) ∧ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ⊆ (V ∖ {𝐴})))
8988simprbi 499 . . . . . . . . . 10 ((𝐺 Σg (𝑊 prefix 𝐼)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} → dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ⊆ (V ∖ {𝐴}))
90 disj2 4406 . . . . . . . . . . 11 ((dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ∩ {𝐴}) = ∅ ↔ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ⊆ (V ∖ {𝐴}))
91 disjsn 4640 . . . . . . . . . . 11 ((dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ))
9290, 91bitr3i 279 . . . . . . . . . 10 (dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ⊆ (V ∖ {𝐴}) ↔ ¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ))
9389, 92sylib 220 . . . . . . . . 9 ((𝐺 Σg (𝑊 prefix 𝐼)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} → ¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ))
9484, 93syl 17 . . . . . . . 8 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ))
95 psgnunilem2.a . . . . . . . . 9 (𝜑𝐴 ∈ dom ((𝑊𝐼) ∖ I ))
9695adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝐴 ∈ dom ((𝑊𝐼) ∖ I ))
9794, 96jca 514 . . . . . . 7 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ∧ 𝐴 ∈ dom ((𝑊𝐼) ∖ I )))
9897olcd 870 . . . . . 6 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ∧ ¬ 𝐴 ∈ dom ((𝑊𝐼) ∖ I )) ∨ (¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ∧ 𝐴 ∈ dom ((𝑊𝐼) ∖ I ))))
99 excxor 1505 . . . . . 6 ((𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ⊻ 𝐴 ∈ dom ((𝑊𝐼) ∖ I )) ↔ ((𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ∧ ¬ 𝐴 ∈ dom ((𝑊𝐼) ∖ I )) ∨ (¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ∧ 𝐴 ∈ dom ((𝑊𝐼) ∖ I ))))
10098, 99sylibr 236 . . . . 5 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ⊻ 𝐴 ∈ dom ((𝑊𝐼) ∖ I )))
101 f1omvdco3 18571 . . . . 5 (((𝐺 Σg (𝑊 prefix 𝐼)):𝐷1-1-onto𝐷 ∧ (𝑊𝐼):𝐷1-1-onto𝐷 ∧ (𝐴 ∈ dom ((𝐺 Σg (𝑊 prefix 𝐼)) ∖ I ) ⊻ 𝐴 ∈ dom ((𝑊𝐼) ∖ I ))) → 𝐴 ∈ dom (((𝐺 Σg (𝑊 prefix 𝐼)) ∘ (𝑊𝐼)) ∖ I ))
10232, 43, 100, 101syl3anc 1367 . . . 4 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝐴 ∈ dom (((𝐺 Σg (𝑊 prefix 𝐼)) ∘ (𝑊𝐼)) ∖ I ))
103 elfzo0 13072 . . . . . . . . . . . . . . 15 (𝐼 ∈ (0..^𝐿) ↔ (𝐼 ∈ ℕ0𝐿 ∈ ℕ ∧ 𝐼 < 𝐿))
104103simp2bi 1142 . . . . . . . . . . . . . 14 (𝐼 ∈ (0..^𝐿) → 𝐿 ∈ ℕ)
10535, 104syl 17 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ℕ)
10636, 105eqeltrd 2913 . . . . . . . . . . . 12 (𝜑 → (♯‘𝑊) ∈ ℕ)
107 wrdfin 13876 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑇𝑊 ∈ Fin)
108 hashnncl 13721 . . . . . . . . . . . . 13 (𝑊 ∈ Fin → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
10924, 107, 1083syl 18 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
110106, 109mpbid 234 . . . . . . . . . . 11 (𝜑𝑊 ≠ ∅)
111110adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝑊 ≠ ∅)
112 pfxlswccat 14069 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑇𝑊 ≠ ∅) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩) = 𝑊)
113112eqcomd 2827 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑇𝑊 ≠ ∅) → 𝑊 = ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩))
11424, 111, 113syl2an2r 683 . . . . . . . . 9 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝑊 = ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩))
11536oveq1d 7165 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑊) − 1) = (𝐿 − 1))
116115adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((♯‘𝑊) − 1) = (𝐿 − 1))
117105nncnd 11648 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ℂ)
118 1cnd 10630 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℂ)
119 elfzoelz 13032 . . . . . . . . . . . . . . 15 (𝐼 ∈ (0..^𝐿) → 𝐼 ∈ ℤ)
12035, 119syl 17 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ ℤ)
121120zcnd 12082 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℂ)
122117, 118, 121subadd2d 11010 . . . . . . . . . . . 12 (𝜑 → ((𝐿 − 1) = 𝐼 ↔ (𝐼 + 1) = 𝐿))
123122biimpar 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐿 − 1) = 𝐼)
124116, 123eqtrd 2856 . . . . . . . . . 10 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((♯‘𝑊) − 1) = 𝐼)
125 oveq2 7158 . . . . . . . . . . . 12 (((♯‘𝑊) − 1) = 𝐼 → (𝑊 prefix ((♯‘𝑊) − 1)) = (𝑊 prefix 𝐼))
126125adantl 484 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝑊) − 1) = 𝐼) → (𝑊 prefix ((♯‘𝑊) − 1)) = (𝑊 prefix 𝐼))
127 lsw 13910 . . . . . . . . . . . . . 14 (𝑊 ∈ Word 𝑇 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
12824, 127syl 17 . . . . . . . . . . . . 13 (𝜑 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
129 fveq2 6664 . . . . . . . . . . . . 13 (((♯‘𝑊) − 1) = 𝐼 → (𝑊‘((♯‘𝑊) − 1)) = (𝑊𝐼))
130128, 129sylan9eq 2876 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝑊) − 1) = 𝐼) → (lastS‘𝑊) = (𝑊𝐼))
131130s1eqd 13949 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝑊) − 1) = 𝐼) → ⟨“(lastS‘𝑊)”⟩ = ⟨“(𝑊𝐼)”⟩)
132126, 131oveq12d 7168 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝑊) − 1) = 𝐼) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩) = ((𝑊 prefix 𝐼) ++ ⟨“(𝑊𝐼)”⟩))
133124, 132syldan 593 . . . . . . . . 9 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩) = ((𝑊 prefix 𝐼) ++ ⟨“(𝑊𝐼)”⟩))
134114, 133eqtrd 2856 . . . . . . . 8 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝑊 = ((𝑊 prefix 𝐼) ++ ⟨“(𝑊𝐼)”⟩))
135134oveq2d 7166 . . . . . . 7 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg 𝑊) = (𝐺 Σg ((𝑊 prefix 𝐼) ++ ⟨“(𝑊𝐼)”⟩)))
13640s1cld 13951 . . . . . . . . 9 (𝜑 → ⟨“(𝑊𝐼)”⟩ ∈ Word (Base‘𝐺))
137 eqid 2821 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
13820, 137gsumccat 18000 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ (𝑊 prefix 𝐼) ∈ Word (Base‘𝐺) ∧ ⟨“(𝑊𝐼)”⟩ ∈ Word (Base‘𝐺)) → (𝐺 Σg ((𝑊 prefix 𝐼) ++ ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 prefix 𝐼))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)))
13918, 27, 136, 138syl3anc 1367 . . . . . . . 8 (𝜑 → (𝐺 Σg ((𝑊 prefix 𝐼) ++ ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 prefix 𝐼))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)))
140139adantr 483 . . . . . . 7 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg ((𝑊 prefix 𝐼) ++ ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 prefix 𝐼))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)))
14120gsumws1 17996 . . . . . . . . . . 11 ((𝑊𝐼) ∈ (Base‘𝐺) → (𝐺 Σg ⟨“(𝑊𝐼)”⟩) = (𝑊𝐼))
14240, 141syl 17 . . . . . . . . . 10 (𝜑 → (𝐺 Σg ⟨“(𝑊𝐼)”⟩) = (𝑊𝐼))
143142oveq2d 7166 . . . . . . . . 9 (𝜑 → ((𝐺 Σg (𝑊 prefix 𝐼))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 prefix 𝐼))(+g𝐺)(𝑊𝐼)))
14415, 20, 137symgov 18506 . . . . . . . . . 10 (((𝐺 Σg (𝑊 prefix 𝐼)) ∈ (Base‘𝐺) ∧ (𝑊𝐼) ∈ (Base‘𝐺)) → ((𝐺 Σg (𝑊 prefix 𝐼))(+g𝐺)(𝑊𝐼)) = ((𝐺 Σg (𝑊 prefix 𝐼)) ∘ (𝑊𝐼)))
14529, 40, 144syl2anc 586 . . . . . . . . 9 (𝜑 → ((𝐺 Σg (𝑊 prefix 𝐼))(+g𝐺)(𝑊𝐼)) = ((𝐺 Σg (𝑊 prefix 𝐼)) ∘ (𝑊𝐼)))
146143, 145eqtrd 2856 . . . . . . . 8 (𝜑 → ((𝐺 Σg (𝑊 prefix 𝐼))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 prefix 𝐼)) ∘ (𝑊𝐼)))
147146adantr 483 . . . . . . 7 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((𝐺 Σg (𝑊 prefix 𝐼))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 prefix 𝐼)) ∘ (𝑊𝐼)))
148135, 140, 1473eqtrd 2860 . . . . . 6 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg 𝑊) = ((𝐺 Σg (𝑊 prefix 𝐼)) ∘ (𝑊𝐼)))
149148difeq1d 4097 . . . . 5 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((𝐺 Σg 𝑊) ∖ I ) = (((𝐺 Σg (𝑊 prefix 𝐼)) ∘ (𝑊𝐼)) ∖ I ))
150149dmeqd 5768 . . . 4 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → dom ((𝐺 Σg 𝑊) ∖ I ) = dom (((𝐺 Σg (𝑊 prefix 𝐼)) ∘ (𝑊𝐼)) ∖ I ))
151102, 150eleqtrrd 2916 . . 3 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝐴 ∈ dom ((𝐺 Σg 𝑊) ∖ I ))
15213, 151mtand 814 . 2 (𝜑 → ¬ (𝐼 + 1) = 𝐿)
153 fzostep1 13147 . . . 4 (𝐼 ∈ (0..^𝐿) → ((𝐼 + 1) ∈ (0..^𝐿) ∨ (𝐼 + 1) = 𝐿))
15435, 153syl 17 . . 3 (𝜑 → ((𝐼 + 1) ∈ (0..^𝐿) ∨ (𝐼 + 1) = 𝐿))
155154ord 860 . 2 (𝜑 → (¬ (𝐼 + 1) ∈ (0..^𝐿) → (𝐼 + 1) = 𝐿))
156152, 155mt3d 150 1 (𝜑 → (𝐼 + 1) ∈ (0..^𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  wxo 1500   = wceq 1533  wcel 2110  wne 3016  wral 3138  {crab 3142  Vcvv 3494  cdif 3932  cin 3934  wss 3935  c0 4290  {csn 4560   class class class wbr 5058  cmpt 5138   I cid 5453  dom cdm 5549  ran crn 5550  cres 5551  ccom 5553  wf 6345  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7150  Fincfn 8503  0cc0 10531  1c1 10532   + caddc 10534   < clt 10669  cmin 10864  cn 11632  0cn0 11891  cz 11975  cuz 12237  ...cfz 12886  ..^cfzo 13027  chash 13684  Word cword 13855  lastSclsw 13908   ++ cconcat 13916  ⟨“cs1 13943   prefix cpfx 14026  Basecbs 16477  +gcplusg 16559   Σg cgsu 16708  Mndcmnd 17905  SubMndcsubmnd 17949  Grpcgrp 18097  SubGrpcsubg 18267  SymGrpcsymg 18489  pmTrspcpmtr 18563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-xor 1501  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-seq 13364  df-hash 13685  df-word 13856  df-lsw 13909  df-concat 13917  df-s1 13944  df-substr 13997  df-pfx 14027  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-tset 16578  df-0g 16709  df-gsum 16710  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-efmnd 18028  df-grp 18100  df-minusg 18101  df-subg 18270  df-symg 18490  df-pmtr 18564
This theorem is referenced by:  psgnunilem2  18617
  Copyright terms: Public domain W3C validator