Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pslem Structured version   Visualization version   GIF version

Theorem pslem 17407
 Description: Lemma for psref 17409 and others. (Contributed by NM, 12-May-2008.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
pslem (𝑅 ∈ PosetRel → (((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶) ∧ (𝐴 𝑅𝐴𝑅𝐴) ∧ ((𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴 = 𝐵)))

Proof of Theorem pslem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrel 17404 . . . . . 6 (𝑅 ∈ PosetRel → Rel 𝑅)
2 brrelex12 5312 . . . . . 6 ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
31, 2sylan 489 . . . . 5 ((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
4 brrelex2 5314 . . . . . 6 ((Rel 𝑅𝐵𝑅𝐶) → 𝐶 ∈ V)
51, 4sylan 489 . . . . 5 ((𝑅 ∈ PosetRel ∧ 𝐵𝑅𝐶) → 𝐶 ∈ V)
63, 5anim12dan 918 . . . 4 ((𝑅 ∈ PosetRel ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐶 ∈ V))
7 pstr2 17406 . . . . . 6 (𝑅 ∈ PosetRel → (𝑅𝑅) ⊆ 𝑅)
8 cotr 5666 . . . . . 6 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
97, 8sylib 208 . . . . 5 (𝑅 ∈ PosetRel → ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
109adantr 472 . . . 4 ((𝑅 ∈ PosetRel ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
11 simpr 479 . . . 4 ((𝑅 ∈ PosetRel ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → (𝐴𝑅𝐵𝐵𝑅𝐶))
12 breq12 4809 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑅𝑦𝐴𝑅𝐵))
13123adant3 1127 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑥𝑅𝑦𝐴𝑅𝐵))
14 breq12 4809 . . . . . . . . 9 ((𝑦 = 𝐵𝑧 = 𝐶) → (𝑦𝑅𝑧𝐵𝑅𝐶))
15143adant1 1125 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑦𝑅𝑧𝐵𝑅𝐶))
1613, 15anbi12d 749 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → ((𝑥𝑅𝑦𝑦𝑅𝑧) ↔ (𝐴𝑅𝐵𝐵𝑅𝐶)))
17 breq12 4809 . . . . . . . 8 ((𝑥 = 𝐴𝑧 = 𝐶) → (𝑥𝑅𝑧𝐴𝑅𝐶))
18173adant2 1126 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑥𝑅𝑧𝐴𝑅𝐶))
1916, 18imbi12d 333 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)))
2019spc3gv 3438 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)))
21203expa 1112 . . . 4 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐶 ∈ V) → (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)))
226, 10, 11, 21syl3c 66 . . 3 ((𝑅 ∈ PosetRel ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐴𝑅𝐶)
2322ex 449 . 2 (𝑅 ∈ PosetRel → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
24 psref2 17405 . . 3 (𝑅 ∈ PosetRel → (𝑅𝑅) = ( I ↾ 𝑅))
25 asymref2 5671 . . . 4 ((𝑅𝑅) = ( I ↾ 𝑅) ↔ (∀𝑥 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)))
2625simplbi 478 . . 3 ((𝑅𝑅) = ( I ↾ 𝑅) → ∀𝑥 𝑅𝑥𝑅𝑥)
27 breq12 4809 . . . . 5 ((𝑥 = 𝐴𝑥 = 𝐴) → (𝑥𝑅𝑥𝐴𝑅𝐴))
2827anidms 680 . . . 4 (𝑥 = 𝐴 → (𝑥𝑅𝑥𝐴𝑅𝐴))
2928rspccv 3446 . . 3 (∀𝑥 𝑅𝑥𝑅𝑥 → (𝐴 𝑅𝐴𝑅𝐴))
3024, 26, 293syl 18 . 2 (𝑅 ∈ PosetRel → (𝐴 𝑅𝐴𝑅𝐴))
313adantrr 755 . . . 4 ((𝑅 ∈ PosetRel ∧ (𝐴𝑅𝐵𝐵𝑅𝐴)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3225simprbi 483 . . . . . 6 ((𝑅𝑅) = ( I ↾ 𝑅) → ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
3324, 32syl 17 . . . . 5 (𝑅 ∈ PosetRel → ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
3433adantr 472 . . . 4 ((𝑅 ∈ PosetRel ∧ (𝐴𝑅𝐵𝐵𝑅𝐴)) → ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
35 simpr 479 . . . 4 ((𝑅 ∈ PosetRel ∧ (𝐴𝑅𝐵𝐵𝑅𝐴)) → (𝐴𝑅𝐵𝐵𝑅𝐴))
36 breq12 4809 . . . . . . . 8 ((𝑦 = 𝐵𝑥 = 𝐴) → (𝑦𝑅𝑥𝐵𝑅𝐴))
3736ancoms 468 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦𝑅𝑥𝐵𝑅𝐴))
3812, 37anbi12d 749 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝐴𝑅𝐵𝐵𝑅𝐴)))
39 eqeq12 2773 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = 𝑦𝐴 = 𝐵))
4038, 39imbi12d 333 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ↔ ((𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴 = 𝐵)))
4140spc2gv 3436 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) → ((𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴 = 𝐵)))
4231, 34, 35, 41syl3c 66 . . 3 ((𝑅 ∈ PosetRel ∧ (𝐴𝑅𝐵𝐵𝑅𝐴)) → 𝐴 = 𝐵)
4342ex 449 . 2 (𝑅 ∈ PosetRel → ((𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴 = 𝐵))
4423, 30, 433jca 1123 1 (𝑅 ∈ PosetRel → (((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶) ∧ (𝐴 𝑅𝐴𝑅𝐴) ∧ ((𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴 = 𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072  ∀wal 1630   = wceq 1632   ∈ wcel 2139  ∀wral 3050  Vcvv 3340   ∩ cin 3714   ⊆ wss 3715  ∪ cuni 4588   class class class wbr 4804   I cid 5173  ◡ccnv 5265   ↾ cres 5268   ∘ ccom 5270  Rel wrel 5271  PosetRelcps 17399 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-res 5278  df-ps 17401 This theorem is referenced by:  psdmrn  17408  psref  17409  psasym  17411  pstr  17412
 Copyright terms: Public domain W3C validator