Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psmeasure Structured version   Visualization version   GIF version

Theorem psmeasure 41108
 Description: Point supported measure, Remark 112B (d) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
psmeasure.x (𝜑𝑋𝑉)
psmeasure.h (𝜑𝐻:𝑋⟶(0[,]+∞))
psmeasure.m 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻𝑥)))
Assertion
Ref Expression
psmeasure (𝜑𝑀 ∈ Meas)
Distinct variable groups:   𝑥,𝐻   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝑀(𝑥)   𝑉(𝑥)

Proof of Theorem psmeasure
Dummy variables 𝑧 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 479 . . . . . . 7 ((𝜑𝑥 ∈ 𝒫 𝑋) → 𝑥 ∈ 𝒫 𝑋)
2 psmeasure.h . . . . . . . . 9 (𝜑𝐻:𝑋⟶(0[,]+∞))
32adantr 472 . . . . . . . 8 ((𝜑𝑥 ∈ 𝒫 𝑋) → 𝐻:𝑋⟶(0[,]+∞))
41elpwid 4278 . . . . . . . 8 ((𝜑𝑥 ∈ 𝒫 𝑋) → 𝑥𝑋)
5 fssres 6183 . . . . . . . 8 ((𝐻:𝑋⟶(0[,]+∞) ∧ 𝑥𝑋) → (𝐻𝑥):𝑥⟶(0[,]+∞))
63, 4, 5syl2anc 696 . . . . . . 7 ((𝜑𝑥 ∈ 𝒫 𝑋) → (𝐻𝑥):𝑥⟶(0[,]+∞))
71, 6sge0cl 41018 . . . . . 6 ((𝜑𝑥 ∈ 𝒫 𝑋) → (Σ^‘(𝐻𝑥)) ∈ (0[,]+∞))
8 psmeasure.m . . . . . 6 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻𝑥)))
97, 8fmptd 6500 . . . . 5 (𝜑𝑀:𝒫 𝑋⟶(0[,]+∞))
108, 7dmmptd 6137 . . . . . 6 (𝜑 → dom 𝑀 = 𝒫 𝑋)
1110feq2d 6144 . . . . 5 (𝜑 → (𝑀:dom 𝑀⟶(0[,]+∞) ↔ 𝑀:𝒫 𝑋⟶(0[,]+∞)))
129, 11mpbird 247 . . . 4 (𝜑𝑀:dom 𝑀⟶(0[,]+∞))
13 psmeasure.x . . . . . 6 (𝜑𝑋𝑉)
14 pwsal 40955 . . . . . 6 (𝑋𝑉 → 𝒫 𝑋 ∈ SAlg)
1513, 14syl 17 . . . . 5 (𝜑 → 𝒫 𝑋 ∈ SAlg)
1610, 15eqeltrd 2803 . . . 4 (𝜑 → dom 𝑀 ∈ SAlg)
1712, 16jca 555 . . 3 (𝜑 → (𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg))
188a1i 11 . . . . 5 (𝜑𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻𝑥))))
19 reseq2 5498 . . . . . . 7 (𝑥 = ∅ → (𝐻𝑥) = (𝐻 ↾ ∅))
2019fveq2d 6308 . . . . . 6 (𝑥 = ∅ → (Σ^‘(𝐻𝑥)) = (Σ^‘(𝐻 ↾ ∅)))
2120adantl 473 . . . . 5 ((𝜑𝑥 = ∅) → (Σ^‘(𝐻𝑥)) = (Σ^‘(𝐻 ↾ ∅)))
22 0elpw 4939 . . . . . 6 ∅ ∈ 𝒫 𝑋
2322a1i 11 . . . . 5 (𝜑 → ∅ ∈ 𝒫 𝑋)
24 fvexd 6316 . . . . 5 (𝜑 → (Σ^‘(𝐻 ↾ ∅)) ∈ V)
2518, 21, 23, 24fvmptd 6402 . . . 4 (𝜑 → (𝑀‘∅) = (Σ^‘(𝐻 ↾ ∅)))
26 res0 5507 . . . . . . 7 (𝐻 ↾ ∅) = ∅
2726fveq2i 6307 . . . . . 6 ^‘(𝐻 ↾ ∅)) = (Σ^‘∅)
28 sge00 41013 . . . . . 6 ^‘∅) = 0
2927, 28eqtri 2746 . . . . 5 ^‘(𝐻 ↾ ∅)) = 0
3029a1i 11 . . . 4 (𝜑 → (Σ^‘(𝐻 ↾ ∅)) = 0)
3125, 30eqtrd 2758 . . 3 (𝜑 → (𝑀‘∅) = 0)
32 simpl 474 . . . . 5 ((𝜑𝑦 ∈ 𝒫 dom 𝑀) → 𝜑)
33 simpr 479 . . . . . . 7 ((𝜑𝑦 ∈ 𝒫 dom 𝑀) → 𝑦 ∈ 𝒫 dom 𝑀)
3410pweqd 4271 . . . . . . . 8 (𝜑 → 𝒫 dom 𝑀 = 𝒫 𝒫 𝑋)
3534adantr 472 . . . . . . 7 ((𝜑𝑦 ∈ 𝒫 dom 𝑀) → 𝒫 dom 𝑀 = 𝒫 𝒫 𝑋)
3633, 35eleqtrd 2805 . . . . . 6 ((𝜑𝑦 ∈ 𝒫 dom 𝑀) → 𝑦 ∈ 𝒫 𝒫 𝑋)
37 elpwi 4276 . . . . . 6 (𝑦 ∈ 𝒫 𝒫 𝑋𝑦 ⊆ 𝒫 𝑋)
3836, 37syl 17 . . . . 5 ((𝜑𝑦 ∈ 𝒫 dom 𝑀) → 𝑦 ⊆ 𝒫 𝑋)
3913ad2antrr 764 . . . . . . . 8 (((𝜑𝑦 ⊆ 𝒫 𝑋) ∧ Disj 𝑤𝑦 𝑤) → 𝑋𝑉)
402ad2antrr 764 . . . . . . . 8 (((𝜑𝑦 ⊆ 𝒫 𝑋) ∧ Disj 𝑤𝑦 𝑤) → 𝐻:𝑋⟶(0[,]+∞))
419ad2antrr 764 . . . . . . . 8 (((𝜑𝑦 ⊆ 𝒫 𝑋) ∧ Disj 𝑤𝑦 𝑤) → 𝑀:𝒫 𝑋⟶(0[,]+∞))
42 simplr 809 . . . . . . . 8 (((𝜑𝑦 ⊆ 𝒫 𝑋) ∧ Disj 𝑤𝑦 𝑤) → 𝑦 ⊆ 𝒫 𝑋)
43 id 22 . . . . . . . . . . 11 (𝑤 = 𝑧𝑤 = 𝑧)
4443cbvdisjv 4739 . . . . . . . . . 10 (Disj 𝑤𝑦 𝑤Disj 𝑧𝑦 𝑧)
4544biimpi 206 . . . . . . . . 9 (Disj 𝑤𝑦 𝑤Disj 𝑧𝑦 𝑧)
4645adantl 473 . . . . . . . 8 (((𝜑𝑦 ⊆ 𝒫 𝑋) ∧ Disj 𝑤𝑦 𝑤) → Disj 𝑧𝑦 𝑧)
4739, 40, 8, 41, 42, 46psmeasurelem 41107 . . . . . . 7 (((𝜑𝑦 ⊆ 𝒫 𝑋) ∧ Disj 𝑤𝑦 𝑤) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦)))
4847adantrl 754 . . . . . 6 (((𝜑𝑦 ⊆ 𝒫 𝑋) ∧ (𝑦 ≼ ω ∧ Disj 𝑤𝑦 𝑤)) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦)))
4948ex 449 . . . . 5 ((𝜑𝑦 ⊆ 𝒫 𝑋) → ((𝑦 ≼ ω ∧ Disj 𝑤𝑦 𝑤) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦))))
5032, 38, 49syl2anc 696 . . . 4 ((𝜑𝑦 ∈ 𝒫 dom 𝑀) → ((𝑦 ≼ ω ∧ Disj 𝑤𝑦 𝑤) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦))))
5150ralrimiva 3068 . . 3 (𝜑 → ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑤𝑦 𝑤) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦))))
5217, 31, 51jca31 558 . 2 (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑤𝑦 𝑤) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦)))))
53 ismea 41088 . 2 (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑤𝑦 𝑤) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦)))))
5452, 53sylibr 224 1 (𝜑𝑀 ∈ Meas)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1596   ∈ wcel 2103  ∀wral 3014  Vcvv 3304   ⊆ wss 3680  ∅c0 4023  𝒫 cpw 4266  ∪ cuni 4544  Disj wdisj 4728   class class class wbr 4760   ↦ cmpt 4837  dom cdm 5218   ↾ cres 5220  ⟶wf 5997  ‘cfv 6001  (class class class)co 6765  ωcom 7182   ≼ cdom 8070  0cc0 10049  +∞cpnf 10184  [,]cicc 12292  SAlgcsalg 40948  Σ^csumge0 40999  Meascmea 41086 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-ac2 9398  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-fal 1602  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-disj 4729  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-oadd 7684  df-er 7862  df-map 7976  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-sup 8464  df-oi 8531  df-card 8878  df-acn 8881  df-ac 9052  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-n0 11406  df-z 11491  df-uz 11801  df-rp 11947  df-xadd 12061  df-ico 12295  df-icc 12296  df-fz 12441  df-fzo 12581  df-seq 12917  df-exp 12976  df-hash 13233  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-clim 14339  df-sum 14537  df-salg 40949  df-sumge0 41000  df-mea 41087 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator