MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psmetxrge0 Structured version   Visualization version   GIF version

Theorem psmetxrge0 22926
Description: The distance function of a pseudometric space is a function into the nonnegative extended real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.)
Assertion
Ref Expression
psmetxrge0 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞))

Proof of Theorem psmetxrge0
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 psmetf 22919 . . 3 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
21ffnd 6518 . 2 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 Fn (𝑋 × 𝑋))
31ffvelrnda 6854 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → (𝐷𝑎) ∈ ℝ*)
4 elxp6 7726 . . . . . . . 8 (𝑎 ∈ (𝑋 × 𝑋) ↔ (𝑎 = ⟨(1st𝑎), (2nd𝑎)⟩ ∧ ((1st𝑎) ∈ 𝑋 ∧ (2nd𝑎) ∈ 𝑋)))
54simprbi 499 . . . . . . 7 (𝑎 ∈ (𝑋 × 𝑋) → ((1st𝑎) ∈ 𝑋 ∧ (2nd𝑎) ∈ 𝑋))
6 psmetge0 22925 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (1st𝑎) ∈ 𝑋 ∧ (2nd𝑎) ∈ 𝑋) → 0 ≤ ((1st𝑎)𝐷(2nd𝑎)))
763expb 1116 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ ((1st𝑎) ∈ 𝑋 ∧ (2nd𝑎) ∈ 𝑋)) → 0 ≤ ((1st𝑎)𝐷(2nd𝑎)))
85, 7sylan2 594 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → 0 ≤ ((1st𝑎)𝐷(2nd𝑎)))
9 1st2nd2 7731 . . . . . . . . 9 (𝑎 ∈ (𝑋 × 𝑋) → 𝑎 = ⟨(1st𝑎), (2nd𝑎)⟩)
109fveq2d 6677 . . . . . . . 8 (𝑎 ∈ (𝑋 × 𝑋) → (𝐷𝑎) = (𝐷‘⟨(1st𝑎), (2nd𝑎)⟩))
11 df-ov 7162 . . . . . . . 8 ((1st𝑎)𝐷(2nd𝑎)) = (𝐷‘⟨(1st𝑎), (2nd𝑎)⟩)
1210, 11syl6eqr 2877 . . . . . . 7 (𝑎 ∈ (𝑋 × 𝑋) → (𝐷𝑎) = ((1st𝑎)𝐷(2nd𝑎)))
1312adantl 484 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → (𝐷𝑎) = ((1st𝑎)𝐷(2nd𝑎)))
148, 13breqtrrd 5097 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → 0 ≤ (𝐷𝑎))
15 elxrge0 12848 . . . . 5 ((𝐷𝑎) ∈ (0[,]+∞) ↔ ((𝐷𝑎) ∈ ℝ* ∧ 0 ≤ (𝐷𝑎)))
163, 14, 15sylanbrc 585 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → (𝐷𝑎) ∈ (0[,]+∞))
1716ralrimiva 3185 . . 3 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑎 ∈ (𝑋 × 𝑋)(𝐷𝑎) ∈ (0[,]+∞))
18 fnfvrnss 6887 . . 3 ((𝐷 Fn (𝑋 × 𝑋) ∧ ∀𝑎 ∈ (𝑋 × 𝑋)(𝐷𝑎) ∈ (0[,]+∞)) → ran 𝐷 ⊆ (0[,]+∞))
192, 17, 18syl2anc 586 . 2 (𝐷 ∈ (PsMet‘𝑋) → ran 𝐷 ⊆ (0[,]+∞))
20 df-f 6362 . 2 (𝐷:(𝑋 × 𝑋)⟶(0[,]+∞) ↔ (𝐷 Fn (𝑋 × 𝑋) ∧ ran 𝐷 ⊆ (0[,]+∞)))
212, 19, 20sylanbrc 585 1 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wral 3141  wss 3939  cop 4576   class class class wbr 5069   × cxp 5556  ran crn 5559   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7159  1st c1st 7690  2nd c2nd 7691  0cc0 10540  +∞cpnf 10675  *cxr 10677  cle 10679  [,]cicc 12744  PsMetcpsmet 20532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-po 5477  df-so 5478  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-1st 7692  df-2nd 7693  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-2 11703  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-icc 12748  df-psmet 20540
This theorem is referenced by:  sitmcl  31613
  Copyright terms: Public domain W3C validator