MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psr1cl Structured version   Visualization version   GIF version

Theorem psr1cl 19604
Description: The identity element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psr1cl.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psr1cl.z 0 = (0g𝑅)
psr1cl.o 1 = (1r𝑅)
psr1cl.u 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
psr1cl.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
psr1cl (𝜑𝑈𝐵)
Distinct variable groups:   𝑥,𝑓, 0   𝑓,𝐼,𝑥   𝑥,𝐵   𝑅,𝑓,𝑥   𝑥,𝐷   𝜑,𝑥   𝑥,𝑉   𝑥,𝑆   𝑥, 1
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   𝑈(𝑥,𝑓)   1 (𝑓)   𝑉(𝑓)

Proof of Theorem psr1cl
StepHypRef Expression
1 psrring.r . . . . . 6 (𝜑𝑅 ∈ Ring)
2 eqid 2760 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
3 psr1cl.o . . . . . . . 8 1 = (1r𝑅)
42, 3ringidcl 18768 . . . . . . 7 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
5 psr1cl.z . . . . . . . 8 0 = (0g𝑅)
62, 5ring0cl 18769 . . . . . . 7 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
74, 6ifcld 4275 . . . . . 6 (𝑅 ∈ Ring → if(𝑥 = (𝐼 × {0}), 1 , 0 ) ∈ (Base‘𝑅))
81, 7syl 17 . . . . 5 (𝜑 → if(𝑥 = (𝐼 × {0}), 1 , 0 ) ∈ (Base‘𝑅))
98adantr 472 . . . 4 ((𝜑𝑥𝐷) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) ∈ (Base‘𝑅))
10 psr1cl.u . . . 4 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
119, 10fmptd 6548 . . 3 (𝜑𝑈:𝐷⟶(Base‘𝑅))
12 fvex 6362 . . . 4 (Base‘𝑅) ∈ V
13 psr1cl.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
14 ovex 6841 . . . . 5 (ℕ0𝑚 𝐼) ∈ V
1513, 14rabex2 4966 . . . 4 𝐷 ∈ V
1612, 15elmap 8052 . . 3 (𝑈 ∈ ((Base‘𝑅) ↑𝑚 𝐷) ↔ 𝑈:𝐷⟶(Base‘𝑅))
1711, 16sylibr 224 . 2 (𝜑𝑈 ∈ ((Base‘𝑅) ↑𝑚 𝐷))
18 psrring.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
19 psr1cl.b . . 3 𝐵 = (Base‘𝑆)
20 psrring.i . . 3 (𝜑𝐼𝑉)
2118, 2, 13, 19, 20psrbas 19580 . 2 (𝜑𝐵 = ((Base‘𝑅) ↑𝑚 𝐷))
2217, 21eleqtrrd 2842 1 (𝜑𝑈𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  {crab 3054  ifcif 4230  {csn 4321  cmpt 4881   × cxp 5264  ccnv 5265  cima 5269  wf 6045  cfv 6049  (class class class)co 6813  𝑚 cmap 8023  Fincfn 8121  0cc0 10128  cn 11212  0cn0 11484  Basecbs 16059  0gc0g 16302  1rcur 18701  Ringcrg 18747   mPwSer cmps 19553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-plusg 16156  df-mulr 16157  df-sca 16159  df-vsca 16160  df-tset 16162  df-0g 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-grp 17626  df-mgp 18690  df-ur 18702  df-ring 18749  df-psr 19558
This theorem is referenced by:  psrlidm  19605  psrridm  19606  psrring  19613  psr1  19614
  Copyright terms: Public domain W3C validator