MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psraddcl Structured version   Visualization version   GIF version

Theorem psraddcl 20157
Description: Closure of the power series addition operation. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
psraddcl.s 𝑆 = (𝐼 mPwSer 𝑅)
psraddcl.b 𝐵 = (Base‘𝑆)
psraddcl.p + = (+g𝑆)
psraddcl.r (𝜑𝑅 ∈ Grp)
psraddcl.x (𝜑𝑋𝐵)
psraddcl.y (𝜑𝑌𝐵)
Assertion
Ref Expression
psraddcl (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)

Proof of Theorem psraddcl
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psraddcl.r . . . . 5 (𝜑𝑅 ∈ Grp)
2 eqid 2821 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2821 . . . . . . 7 (+g𝑅) = (+g𝑅)
42, 3grpcl 18105 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
543expb 1116 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
61, 5sylan 582 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
7 psraddcl.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
8 eqid 2821 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
9 psraddcl.b . . . . 5 𝐵 = (Base‘𝑆)
10 psraddcl.x . . . . 5 (𝜑𝑋𝐵)
117, 2, 8, 9, 10psrelbas 20153 . . . 4 (𝜑𝑋:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
12 psraddcl.y . . . . 5 (𝜑𝑌𝐵)
137, 2, 8, 9, 12psrelbas 20153 . . . 4 (𝜑𝑌:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
14 ovex 7183 . . . . . 6 (ℕ0m 𝐼) ∈ V
1514rabex 5227 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
1615a1i 11 . . . 4 (𝜑 → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
17 inidm 4194 . . . 4 ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∩ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
186, 11, 13, 16, 16, 17off 7418 . . 3 (𝜑 → (𝑋f (+g𝑅)𝑌):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
19 fvex 6677 . . . 4 (Base‘𝑅) ∈ V
2019, 15elmap 8429 . . 3 ((𝑋f (+g𝑅)𝑌) ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ↔ (𝑋f (+g𝑅)𝑌):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
2118, 20sylibr 236 . 2 (𝜑 → (𝑋f (+g𝑅)𝑌) ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
22 psraddcl.p . . 3 + = (+g𝑆)
237, 9, 3, 22, 10, 12psradd 20156 . 2 (𝜑 → (𝑋 + 𝑌) = (𝑋f (+g𝑅)𝑌))
24 reldmpsr 20135 . . . . . 6 Rel dom mPwSer
2524, 7, 9elbasov 16539 . . . . 5 (𝑋𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
2610, 25syl 17 . . . 4 (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
2726simpld 497 . . 3 (𝜑𝐼 ∈ V)
287, 2, 8, 9, 27psrbas 20152 . 2 (𝜑𝐵 = ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
2921, 23, 283eltr4d 2928 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {crab 3142  Vcvv 3494  ccnv 5548  cima 5552  wf 6345  cfv 6349  (class class class)co 7150  f cof 7401  m cmap 8400  Fincfn 8503  cn 11632  0cn0 11891  Basecbs 16477  +gcplusg 16559  Grpcgrp 18097   mPwSer cmps 20125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-tset 16578  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-psr 20130
This theorem is referenced by:  psrgrp  20172  psrlmod  20175  psrdi  20180  psrdir  20181  mplsubglem  20208
  Copyright terms: Public domain W3C validator