MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrass23 Structured version   Visualization version   GIF version

Theorem psrass23 19177
Description: Associative identities for the ring of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) (Proof shortened by AV, 25-Nov-2019.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psrass.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrass.t × = (.r𝑆)
psrass.b 𝐵 = (Base‘𝑆)
psrass.x (𝜑𝑋𝐵)
psrass.y (𝜑𝑌𝐵)
psrcom.c (𝜑𝑅 ∈ CRing)
psrass.k 𝐾 = (Base‘𝑅)
psrass.n · = ( ·𝑠𝑆)
psrass.a (𝜑𝐴𝐾)
Assertion
Ref Expression
psrass23 (𝜑 → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))))
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   · (𝑓)   × (𝑓)   𝐾(𝑓)   𝑉(𝑓)

Proof of Theorem psrass23
Dummy variables 𝑥 𝑘 𝑦 𝑤 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 psrring.i . . 3 (𝜑𝐼𝑉)
3 psrring.r . . 3 (𝜑𝑅 ∈ Ring)
4 psrass.d . . 3 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
5 psrass.t . . 3 × = (.r𝑆)
6 psrass.b . . 3 𝐵 = (Base‘𝑆)
7 psrass.x . . 3 (𝜑𝑋𝐵)
8 psrass.y . . 3 (𝜑𝑌𝐵)
9 psrass.k . . 3 𝐾 = (Base‘𝑅)
10 psrass.n . . 3 · = ( ·𝑠𝑆)
11 psrass.a . . 3 (𝜑𝐴𝐾)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11psrass23l 19175 . 2 (𝜑 → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)))
13 eqid 2609 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
14 eqid 2609 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
1511adantr 479 . . . . . . . . . . . 12 ((𝜑𝑘𝐷) → 𝐴𝐾)
1615, 9syl6eleq 2697 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → 𝐴 ∈ (Base‘𝑅))
1716adantr 479 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝐴 ∈ (Base‘𝑅))
188ad2antrr 757 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑌𝐵)
19 ssrab2 3649 . . . . . . . . . . 11 {𝑦𝐷𝑦𝑟𝑘} ⊆ 𝐷
202ad2antrr 757 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝐼𝑉)
21 simplr 787 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑘𝐷)
22 simpr 475 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘})
23 eqid 2609 . . . . . . . . . . . . 13 {𝑦𝐷𝑦𝑟𝑘} = {𝑦𝐷𝑦𝑟𝑘}
244, 23psrbagconcl 19140 . . . . . . . . . . . 12 ((𝐼𝑉𝑘𝐷𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑘𝑓𝑥) ∈ {𝑦𝐷𝑦𝑟𝑘})
2520, 21, 22, 24syl3anc 1317 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑘𝑓𝑥) ∈ {𝑦𝐷𝑦𝑟𝑘})
2619, 25sseldi 3565 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑘𝑓𝑥) ∈ 𝐷)
271, 10, 13, 6, 14, 4, 17, 18, 26psrvscaval 19159 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → ((𝐴 · 𝑌)‘(𝑘𝑓𝑥)) = (𝐴(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))
2827oveq2d 6543 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → ((𝑋𝑥)(.r𝑅)((𝐴 · 𝑌)‘(𝑘𝑓𝑥))) = ((𝑋𝑥)(.r𝑅)(𝐴(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))
297ad2antrr 757 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑋𝐵)
301, 13, 4, 6, 29psrelbas 19146 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑋:𝐷⟶(Base‘𝑅))
3119, 22sseldi 3565 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑥𝐷)
3230, 31ffvelrnd 6253 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑋𝑥) ∈ (Base‘𝑅))
331, 13, 4, 6, 18psrelbas 19146 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑌:𝐷⟶(Base‘𝑅))
3433, 26ffvelrnd 6253 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑌‘(𝑘𝑓𝑥)) ∈ (Base‘𝑅))
35 psrcom.c . . . . . . . . . . 11 (𝜑𝑅 ∈ CRing)
3635ad2antrr 757 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑅 ∈ CRing)
3713, 14crngcom 18331 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢(.r𝑅)𝑣) = (𝑣(.r𝑅)𝑢))
38373expb 1257 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅))) → (𝑢(.r𝑅)𝑣) = (𝑣(.r𝑅)𝑢))
3936, 38sylan 486 . . . . . . . . 9 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅))) → (𝑢(.r𝑅)𝑣) = (𝑣(.r𝑅)𝑢))
403ad2antrr 757 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑅 ∈ Ring)
4113, 14ringass 18333 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅) ∧ 𝑤 ∈ (Base‘𝑅))) → ((𝑢(.r𝑅)𝑣)(.r𝑅)𝑤) = (𝑢(.r𝑅)(𝑣(.r𝑅)𝑤)))
4240, 41sylan 486 . . . . . . . . 9 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅) ∧ 𝑤 ∈ (Base‘𝑅))) → ((𝑢(.r𝑅)𝑣)(.r𝑅)𝑤) = (𝑢(.r𝑅)(𝑣(.r𝑅)𝑤)))
4332, 17, 34, 39, 42caov12d 6730 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → ((𝑋𝑥)(.r𝑅)(𝐴(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) = (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))
4428, 43eqtrd 2643 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → ((𝑋𝑥)(.r𝑅)((𝐴 · 𝑌)‘(𝑘𝑓𝑥))) = (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))
4544mpteq2dva 4666 . . . . . 6 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝐴 · 𝑌)‘(𝑘𝑓𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))))
4645oveq2d 6543 . . . . 5 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝐴 · 𝑌)‘(𝑘𝑓𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))))
47 eqid 2609 . . . . . 6 (0g𝑅) = (0g𝑅)
48 eqid 2609 . . . . . 6 (+g𝑅) = (+g𝑅)
493adantr 479 . . . . . 6 ((𝜑𝑘𝐷) → 𝑅 ∈ Ring)
504psrbaglefi 19139 . . . . . . 7 ((𝐼𝑉𝑘𝐷) → {𝑦𝐷𝑦𝑟𝑘} ∈ Fin)
512, 50sylan 486 . . . . . 6 ((𝜑𝑘𝐷) → {𝑦𝐷𝑦𝑟𝑘} ∈ Fin)
5213, 14ringcl 18330 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝑥) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑘𝑓𝑥)) ∈ (Base‘𝑅)) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))) ∈ (Base‘𝑅))
5340, 32, 34, 52syl3anc 1317 . . . . . 6 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))) ∈ (Base‘𝑅))
54 ovex 6555 . . . . . . . . . . 11 (ℕ0𝑚 𝐼) ∈ V
554, 54rabex2 4737 . . . . . . . . . 10 𝐷 ∈ V
5655mptrabex 6370 . . . . . . . . 9 (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∈ V
57 funmpt 5826 . . . . . . . . 9 Fun (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))
58 fvex 6098 . . . . . . . . 9 (0g𝑅) ∈ V
5956, 57, 583pm3.2i 1231 . . . . . . . 8 ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∧ (0g𝑅) ∈ V)
6059a1i 11 . . . . . . 7 ((𝜑𝑘𝐷) → ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∧ (0g𝑅) ∈ V))
61 suppssdm 7172 . . . . . . . . 9 ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) supp (0g𝑅)) ⊆ dom (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))
62 eqid 2609 . . . . . . . . . 10 (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))
6362dmmptss 5534 . . . . . . . . 9 dom (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ⊆ {𝑦𝐷𝑦𝑟𝑘}
6461, 63sstri 3576 . . . . . . . 8 ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) supp (0g𝑅)) ⊆ {𝑦𝐷𝑦𝑟𝑘}
6564a1i 11 . . . . . . 7 ((𝜑𝑘𝐷) → ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) supp (0g𝑅)) ⊆ {𝑦𝐷𝑦𝑟𝑘})
66 suppssfifsupp 8150 . . . . . . 7 ((((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∧ (0g𝑅) ∈ V) ∧ ({𝑦𝐷𝑦𝑟𝑘} ∈ Fin ∧ ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) supp (0g𝑅)) ⊆ {𝑦𝐷𝑦𝑟𝑘})) → (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) finSupp (0g𝑅))
6760, 51, 65, 66syl12anc 1315 . . . . . 6 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) finSupp (0g𝑅))
6813, 47, 48, 14, 49, 51, 16, 53, 67gsummulc2 18376 . . . . 5 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))) = (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))))
6946, 68eqtrd 2643 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝐴 · 𝑌)‘(𝑘𝑓𝑥))))) = (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))))
7069mpteq2dva 4666 . . 3 (𝜑 → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝐴 · 𝑌)‘(𝑘𝑓𝑥)))))) = (𝑘𝐷 ↦ (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))))))
711, 10, 9, 6, 3, 11, 8psrvscacl 19160 . . . 4 (𝜑 → (𝐴 · 𝑌) ∈ 𝐵)
721, 6, 14, 5, 4, 7, 71psrmulfval 19152 . . 3 (𝜑 → (𝑋 × (𝐴 · 𝑌)) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝐴 · 𝑌)‘(𝑘𝑓𝑥)))))))
731, 6, 5, 3, 7, 8psrmulcl 19155 . . . . 5 (𝜑 → (𝑋 × 𝑌) ∈ 𝐵)
741, 10, 9, 6, 14, 4, 11, 73psrvsca 19158 . . . 4 (𝜑 → (𝐴 · (𝑋 × 𝑌)) = ((𝐷 × {𝐴}) ∘𝑓 (.r𝑅)(𝑋 × 𝑌)))
7555a1i 11 . . . . 5 (𝜑𝐷 ∈ V)
76 ovex 6555 . . . . . 6 (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))) ∈ V
7776a1i 11 . . . . 5 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))) ∈ V)
78 fconstmpt 5075 . . . . . 6 (𝐷 × {𝐴}) = (𝑘𝐷𝐴)
7978a1i 11 . . . . 5 (𝜑 → (𝐷 × {𝐴}) = (𝑘𝐷𝐴))
801, 6, 14, 5, 4, 7, 8psrmulfval 19152 . . . . 5 (𝜑 → (𝑋 × 𝑌) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))))
8175, 15, 77, 79, 80offval2 6789 . . . 4 (𝜑 → ((𝐷 × {𝐴}) ∘𝑓 (.r𝑅)(𝑋 × 𝑌)) = (𝑘𝐷 ↦ (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))))))
8274, 81eqtrd 2643 . . 3 (𝜑 → (𝐴 · (𝑋 × 𝑌)) = (𝑘𝐷 ↦ (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))))))
8370, 72, 823eqtr4d 2653 . 2 (𝜑 → (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌)))
8412, 83jca 552 1 (𝜑 → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  {crab 2899  Vcvv 3172  wss 3539  {csn 4124   class class class wbr 4577  cmpt 4637   × cxp 5026  ccnv 5027  dom cdm 5028  cima 5031  Fun wfun 5784  cfv 5790  (class class class)co 6527  𝑓 cof 6770  𝑟 cofr 6771   supp csupp 7159  𝑚 cmap 7721  Fincfn 7818   finSupp cfsupp 8135  cle 9931  cmin 10117  cn 10867  0cn0 11139  Basecbs 15641  +gcplusg 15714  .rcmulr 15715   ·𝑠 cvsca 15718  0gc0g 15869   Σg cgsu 15870  Ringcrg 18316  CRingccrg 18317   mPwSer cmps 19118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-ofr 6773  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-oi 8275  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-uz 11520  df-fz 12153  df-fzo 12290  df-seq 12619  df-hash 12935  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-plusg 15727  df-mulr 15728  df-sca 15730  df-vsca 15731  df-tset 15733  df-0g 15871  df-gsum 15872  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-mhm 17104  df-grp 17194  df-minusg 17195  df-ghm 17427  df-cntz 17519  df-cmn 17964  df-abl 17965  df-mgp 18259  df-ur 18271  df-ring 18318  df-cring 18319  df-psr 19123
This theorem is referenced by:  psrassa  19181
  Copyright terms: Public domain W3C validator