MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrass23 Structured version   Visualization version   GIF version

Theorem psrass23 19632
Description: Associative identities for the ring of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) (Proof shortened by AV, 25-Nov-2019.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psrass.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrass.t × = (.r𝑆)
psrass.b 𝐵 = (Base‘𝑆)
psrass.x (𝜑𝑋𝐵)
psrass.y (𝜑𝑌𝐵)
psrcom.c (𝜑𝑅 ∈ CRing)
psrass.k 𝐾 = (Base‘𝑅)
psrass.n · = ( ·𝑠𝑆)
psrass.a (𝜑𝐴𝐾)
Assertion
Ref Expression
psrass23 (𝜑 → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))))
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   · (𝑓)   × (𝑓)   𝐾(𝑓)   𝑉(𝑓)

Proof of Theorem psrass23
Dummy variables 𝑥 𝑘 𝑦 𝑤 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 psrring.i . . 3 (𝜑𝐼𝑉)
3 psrring.r . . 3 (𝜑𝑅 ∈ Ring)
4 psrass.d . . 3 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
5 psrass.t . . 3 × = (.r𝑆)
6 psrass.b . . 3 𝐵 = (Base‘𝑆)
7 psrass.x . . 3 (𝜑𝑋𝐵)
8 psrass.y . . 3 (𝜑𝑌𝐵)
9 psrass.k . . 3 𝐾 = (Base‘𝑅)
10 psrass.n . . 3 · = ( ·𝑠𝑆)
11 psrass.a . . 3 (𝜑𝐴𝐾)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11psrass23l 19630 . 2 (𝜑 → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)))
13 eqid 2760 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
14 eqid 2760 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
1511adantr 472 . . . . . . . . . . . 12 ((𝜑𝑘𝐷) → 𝐴𝐾)
1615, 9syl6eleq 2849 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → 𝐴 ∈ (Base‘𝑅))
1716adantr 472 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝐴 ∈ (Base‘𝑅))
188ad2antrr 764 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑌𝐵)
19 ssrab2 3828 . . . . . . . . . . 11 {𝑦𝐷𝑦𝑟𝑘} ⊆ 𝐷
202ad2antrr 764 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝐼𝑉)
21 simplr 809 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑘𝐷)
22 simpr 479 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘})
23 eqid 2760 . . . . . . . . . . . . 13 {𝑦𝐷𝑦𝑟𝑘} = {𝑦𝐷𝑦𝑟𝑘}
244, 23psrbagconcl 19595 . . . . . . . . . . . 12 ((𝐼𝑉𝑘𝐷𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑘𝑓𝑥) ∈ {𝑦𝐷𝑦𝑟𝑘})
2520, 21, 22, 24syl3anc 1477 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑘𝑓𝑥) ∈ {𝑦𝐷𝑦𝑟𝑘})
2619, 25sseldi 3742 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑘𝑓𝑥) ∈ 𝐷)
271, 10, 13, 6, 14, 4, 17, 18, 26psrvscaval 19614 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → ((𝐴 · 𝑌)‘(𝑘𝑓𝑥)) = (𝐴(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))
2827oveq2d 6830 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → ((𝑋𝑥)(.r𝑅)((𝐴 · 𝑌)‘(𝑘𝑓𝑥))) = ((𝑋𝑥)(.r𝑅)(𝐴(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))
297ad2antrr 764 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑋𝐵)
301, 13, 4, 6, 29psrelbas 19601 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑋:𝐷⟶(Base‘𝑅))
3119, 22sseldi 3742 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑥𝐷)
3230, 31ffvelrnd 6524 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑋𝑥) ∈ (Base‘𝑅))
331, 13, 4, 6, 18psrelbas 19601 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑌:𝐷⟶(Base‘𝑅))
3433, 26ffvelrnd 6524 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑌‘(𝑘𝑓𝑥)) ∈ (Base‘𝑅))
35 psrcom.c . . . . . . . . . . 11 (𝜑𝑅 ∈ CRing)
3635ad2antrr 764 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑅 ∈ CRing)
3713, 14crngcom 18782 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢(.r𝑅)𝑣) = (𝑣(.r𝑅)𝑢))
38373expb 1114 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅))) → (𝑢(.r𝑅)𝑣) = (𝑣(.r𝑅)𝑢))
3936, 38sylan 489 . . . . . . . . 9 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅))) → (𝑢(.r𝑅)𝑣) = (𝑣(.r𝑅)𝑢))
403ad2antrr 764 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑅 ∈ Ring)
4113, 14ringass 18784 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅) ∧ 𝑤 ∈ (Base‘𝑅))) → ((𝑢(.r𝑅)𝑣)(.r𝑅)𝑤) = (𝑢(.r𝑅)(𝑣(.r𝑅)𝑤)))
4240, 41sylan 489 . . . . . . . . 9 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅) ∧ 𝑤 ∈ (Base‘𝑅))) → ((𝑢(.r𝑅)𝑣)(.r𝑅)𝑤) = (𝑢(.r𝑅)(𝑣(.r𝑅)𝑤)))
4332, 17, 34, 39, 42caov12d 7021 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → ((𝑋𝑥)(.r𝑅)(𝐴(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) = (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))
4428, 43eqtrd 2794 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → ((𝑋𝑥)(.r𝑅)((𝐴 · 𝑌)‘(𝑘𝑓𝑥))) = (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))
4544mpteq2dva 4896 . . . . . 6 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝐴 · 𝑌)‘(𝑘𝑓𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))))
4645oveq2d 6830 . . . . 5 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝐴 · 𝑌)‘(𝑘𝑓𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))))
47 eqid 2760 . . . . . 6 (0g𝑅) = (0g𝑅)
48 eqid 2760 . . . . . 6 (+g𝑅) = (+g𝑅)
493adantr 472 . . . . . 6 ((𝜑𝑘𝐷) → 𝑅 ∈ Ring)
504psrbaglefi 19594 . . . . . . 7 ((𝐼𝑉𝑘𝐷) → {𝑦𝐷𝑦𝑟𝑘} ∈ Fin)
512, 50sylan 489 . . . . . 6 ((𝜑𝑘𝐷) → {𝑦𝐷𝑦𝑟𝑘} ∈ Fin)
5213, 14ringcl 18781 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝑥) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑘𝑓𝑥)) ∈ (Base‘𝑅)) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))) ∈ (Base‘𝑅))
5340, 32, 34, 52syl3anc 1477 . . . . . 6 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))) ∈ (Base‘𝑅))
54 ovex 6842 . . . . . . . . . . 11 (ℕ0𝑚 𝐼) ∈ V
554, 54rabex2 4966 . . . . . . . . . 10 𝐷 ∈ V
5655mptrabex 6653 . . . . . . . . 9 (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∈ V
57 funmpt 6087 . . . . . . . . 9 Fun (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))
58 fvex 6363 . . . . . . . . 9 (0g𝑅) ∈ V
5956, 57, 583pm3.2i 1424 . . . . . . . 8 ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∧ (0g𝑅) ∈ V)
6059a1i 11 . . . . . . 7 ((𝜑𝑘𝐷) → ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∧ (0g𝑅) ∈ V))
61 suppssdm 7477 . . . . . . . . 9 ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) supp (0g𝑅)) ⊆ dom (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))
62 eqid 2760 . . . . . . . . . 10 (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))
6362dmmptss 5792 . . . . . . . . 9 dom (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ⊆ {𝑦𝐷𝑦𝑟𝑘}
6461, 63sstri 3753 . . . . . . . 8 ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) supp (0g𝑅)) ⊆ {𝑦𝐷𝑦𝑟𝑘}
6564a1i 11 . . . . . . 7 ((𝜑𝑘𝐷) → ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) supp (0g𝑅)) ⊆ {𝑦𝐷𝑦𝑟𝑘})
66 suppssfifsupp 8457 . . . . . . 7 ((((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∧ (0g𝑅) ∈ V) ∧ ({𝑦𝐷𝑦𝑟𝑘} ∈ Fin ∧ ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) supp (0g𝑅)) ⊆ {𝑦𝐷𝑦𝑟𝑘})) → (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) finSupp (0g𝑅))
6760, 51, 65, 66syl12anc 1475 . . . . . 6 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) finSupp (0g𝑅))
6813, 47, 48, 14, 49, 51, 16, 53, 67gsummulc2 18827 . . . . 5 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))) = (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))))
6946, 68eqtrd 2794 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝐴 · 𝑌)‘(𝑘𝑓𝑥))))) = (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))))
7069mpteq2dva 4896 . . 3 (𝜑 → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝐴 · 𝑌)‘(𝑘𝑓𝑥)))))) = (𝑘𝐷 ↦ (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))))))
711, 10, 9, 6, 3, 11, 8psrvscacl 19615 . . . 4 (𝜑 → (𝐴 · 𝑌) ∈ 𝐵)
721, 6, 14, 5, 4, 7, 71psrmulfval 19607 . . 3 (𝜑 → (𝑋 × (𝐴 · 𝑌)) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝐴 · 𝑌)‘(𝑘𝑓𝑥)))))))
731, 6, 5, 3, 7, 8psrmulcl 19610 . . . . 5 (𝜑 → (𝑋 × 𝑌) ∈ 𝐵)
741, 10, 9, 6, 14, 4, 11, 73psrvsca 19613 . . . 4 (𝜑 → (𝐴 · (𝑋 × 𝑌)) = ((𝐷 × {𝐴}) ∘𝑓 (.r𝑅)(𝑋 × 𝑌)))
7555a1i 11 . . . . 5 (𝜑𝐷 ∈ V)
76 ovex 6842 . . . . . 6 (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))) ∈ V
7776a1i 11 . . . . 5 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))) ∈ V)
78 fconstmpt 5320 . . . . . 6 (𝐷 × {𝐴}) = (𝑘𝐷𝐴)
7978a1i 11 . . . . 5 (𝜑 → (𝐷 × {𝐴}) = (𝑘𝐷𝐴))
801, 6, 14, 5, 4, 7, 8psrmulfval 19607 . . . . 5 (𝜑 → (𝑋 × 𝑌) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))))
8175, 15, 77, 79, 80offval2 7080 . . . 4 (𝜑 → ((𝐷 × {𝐴}) ∘𝑓 (.r𝑅)(𝑋 × 𝑌)) = (𝑘𝐷 ↦ (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))))))
8274, 81eqtrd 2794 . . 3 (𝜑 → (𝐴 · (𝑋 × 𝑌)) = (𝑘𝐷 ↦ (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))))))
8370, 72, 823eqtr4d 2804 . 2 (𝜑 → (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌)))
8412, 83jca 555 1 (𝜑 → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  {crab 3054  Vcvv 3340  wss 3715  {csn 4321   class class class wbr 4804  cmpt 4881   × cxp 5264  ccnv 5265  dom cdm 5266  cima 5269  Fun wfun 6043  cfv 6049  (class class class)co 6814  𝑓 cof 7061  𝑟 cofr 7062   supp csupp 7464  𝑚 cmap 8025  Fincfn 8123   finSupp cfsupp 8442  cle 10287  cmin 10478  cn 11232  0cn0 11504  Basecbs 16079  +gcplusg 16163  .rcmulr 16164   ·𝑠 cvsca 16167  0gc0g 16322   Σg cgsu 16323  Ringcrg 18767  CRingccrg 18768   mPwSer cmps 19573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-ofr 7064  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-oi 8582  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-uz 11900  df-fz 12540  df-fzo 12680  df-seq 13016  df-hash 13332  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-plusg 16176  df-mulr 16177  df-sca 16179  df-vsca 16180  df-tset 16182  df-0g 16324  df-gsum 16325  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mhm 17556  df-grp 17646  df-minusg 17647  df-ghm 17879  df-cntz 17970  df-cmn 18415  df-abl 18416  df-mgp 18710  df-ur 18722  df-ring 18769  df-cring 18770  df-psr 19578
This theorem is referenced by:  psrassa  19636
  Copyright terms: Public domain W3C validator