MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrassa Structured version   Visualization version   GIF version

Theorem psrassa 19616
Description: The ring of power series is an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrcnrg.s 𝑆 = (𝐼 mPwSer 𝑅)
psrcnrg.i (𝜑𝐼𝑉)
psrcnrg.r (𝜑𝑅 ∈ CRing)
Assertion
Ref Expression
psrassa (𝜑𝑆 ∈ AssAlg)

Proof of Theorem psrassa
Dummy variables 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2761 . 2 (𝜑 → (Base‘𝑆) = (Base‘𝑆))
2 psrcnrg.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
3 psrcnrg.i . . 3 (𝜑𝐼𝑉)
4 psrcnrg.r . . 3 (𝜑𝑅 ∈ CRing)
52, 3, 4psrsca 19591 . 2 (𝜑𝑅 = (Scalar‘𝑆))
6 eqidd 2761 . 2 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
7 eqidd 2761 . 2 (𝜑 → ( ·𝑠𝑆) = ( ·𝑠𝑆))
8 eqidd 2761 . 2 (𝜑 → (.r𝑆) = (.r𝑆))
9 crngring 18758 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
104, 9syl 17 . . 3 (𝜑𝑅 ∈ Ring)
112, 3, 10psrlmod 19603 . 2 (𝜑𝑆 ∈ LMod)
122, 3, 10psrring 19613 . 2 (𝜑𝑆 ∈ Ring)
133adantr 472 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝐼𝑉)
1410adantr 472 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Ring)
15 eqid 2760 . . . 4 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
16 eqid 2760 . . . 4 (.r𝑆) = (.r𝑆)
17 eqid 2760 . . . 4 (Base‘𝑆) = (Base‘𝑆)
18 simpr2 1236 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆))
19 simpr3 1238 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧 ∈ (Base‘𝑆))
204adantr 472 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ CRing)
21 eqid 2760 . . . 4 (Base‘𝑅) = (Base‘𝑅)
22 eqid 2760 . . . 4 ( ·𝑠𝑆) = ( ·𝑠𝑆)
23 simpr1 1234 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑅))
242, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23psrass23 19612 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (((𝑥( ·𝑠𝑆)𝑦)(.r𝑆)𝑧) = (𝑥( ·𝑠𝑆)(𝑦(.r𝑆)𝑧)) ∧ (𝑦(.r𝑆)(𝑥( ·𝑠𝑆)𝑧)) = (𝑥( ·𝑠𝑆)(𝑦(.r𝑆)𝑧))))
2524simpld 477 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥( ·𝑠𝑆)𝑦)(.r𝑆)𝑧) = (𝑥( ·𝑠𝑆)(𝑦(.r𝑆)𝑧)))
2624simprd 482 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦(.r𝑆)(𝑥( ·𝑠𝑆)𝑧)) = (𝑥( ·𝑠𝑆)(𝑦(.r𝑆)𝑧)))
271, 5, 6, 7, 8, 11, 12, 4, 25, 26isassad 19525 1 (𝜑𝑆 ∈ AssAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  {crab 3054  ccnv 5265  cima 5269  cfv 6049  (class class class)co 6813  𝑚 cmap 8023  Fincfn 8121  cn 11212  0cn0 11484  Basecbs 16059  .rcmulr 16144   ·𝑠 cvsca 16147  Ringcrg 18747  CRingccrg 18748  AssAlgcasa 19511   mPwSer cmps 19553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-ofr 7063  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-fzo 12660  df-seq 12996  df-hash 13312  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-sca 16159  df-vsca 16160  df-tset 16162  df-0g 16304  df-gsum 16305  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-grp 17626  df-minusg 17627  df-mulg 17742  df-ghm 17859  df-cntz 17950  df-cmn 18395  df-abl 18396  df-mgp 18690  df-ur 18702  df-ring 18749  df-cring 18750  df-lmod 19067  df-assa 19514  df-psr 19558
This theorem is referenced by:  mplassa  19656  mplbas2  19672  opsrassa  19691  mplind  19704  evlseu  19718
  Copyright terms: Public domain W3C validator