MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagcon Structured version   Visualization version   GIF version

Theorem psrbagcon 19290
Description: The analogue of the statement "0 ≤ 𝐺𝐹 implies 0 ≤ 𝐹𝐺𝐹 " for finite bags. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbagcon ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → ((𝐹𝑓𝐺) ∈ 𝐷 ∧ (𝐹𝑓𝐺) ∘𝑟𝐹))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐺   𝑓,𝐼
Allowed substitution hints:   𝐷(𝑓)   𝑉(𝑓)

Proof of Theorem psrbagcon
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr1 1065 . . . . . . . 8 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → 𝐹𝐷)
2 psrbag.d . . . . . . . . . 10 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
32psrbag 19283 . . . . . . . . 9 (𝐼𝑉 → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
43adantr 481 . . . . . . . 8 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
51, 4mpbid 222 . . . . . . 7 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin))
65simpld 475 . . . . . 6 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → 𝐹:𝐼⟶ℕ0)
7 ffn 6002 . . . . . 6 (𝐹:𝐼⟶ℕ0𝐹 Fn 𝐼)
86, 7syl 17 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → 𝐹 Fn 𝐼)
9 simpr2 1066 . . . . . 6 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → 𝐺:𝐼⟶ℕ0)
10 ffn 6002 . . . . . 6 (𝐺:𝐼⟶ℕ0𝐺 Fn 𝐼)
119, 10syl 17 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → 𝐺 Fn 𝐼)
12 simpl 473 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → 𝐼𝑉)
13 inidm 3800 . . . . 5 (𝐼𝐼) = 𝐼
148, 11, 12, 12, 13offn 6861 . . . 4 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐹𝑓𝐺) Fn 𝐼)
15 eqidd 2622 . . . . . . 7 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
16 eqidd 2622 . . . . . . 7 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → (𝐺𝑥) = (𝐺𝑥))
178, 11, 12, 12, 13, 15, 16ofval 6859 . . . . . 6 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → ((𝐹𝑓𝐺)‘𝑥) = ((𝐹𝑥) − (𝐺𝑥)))
18 simpr3 1067 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → 𝐺𝑟𝐹)
1911, 8, 12, 12, 13, 16, 15ofrfval 6858 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐺𝑟𝐹 ↔ ∀𝑥𝐼 (𝐺𝑥) ≤ (𝐹𝑥)))
2018, 19mpbid 222 . . . . . . . 8 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → ∀𝑥𝐼 (𝐺𝑥) ≤ (𝐹𝑥))
2120r19.21bi 2927 . . . . . . 7 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → (𝐺𝑥) ≤ (𝐹𝑥))
229ffvelrnda 6315 . . . . . . . 8 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → (𝐺𝑥) ∈ ℕ0)
236ffvelrnda 6315 . . . . . . . 8 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℕ0)
24 nn0sub 11287 . . . . . . . 8 (((𝐺𝑥) ∈ ℕ0 ∧ (𝐹𝑥) ∈ ℕ0) → ((𝐺𝑥) ≤ (𝐹𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ∈ ℕ0))
2522, 23, 24syl2anc 692 . . . . . . 7 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → ((𝐺𝑥) ≤ (𝐹𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ∈ ℕ0))
2621, 25mpbid 222 . . . . . 6 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → ((𝐹𝑥) − (𝐺𝑥)) ∈ ℕ0)
2717, 26eqeltrd 2698 . . . . 5 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → ((𝐹𝑓𝐺)‘𝑥) ∈ ℕ0)
2827ralrimiva 2960 . . . 4 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → ∀𝑥𝐼 ((𝐹𝑓𝐺)‘𝑥) ∈ ℕ0)
29 ffnfv 6343 . . . 4 ((𝐹𝑓𝐺):𝐼⟶ℕ0 ↔ ((𝐹𝑓𝐺) Fn 𝐼 ∧ ∀𝑥𝐼 ((𝐹𝑓𝐺)‘𝑥) ∈ ℕ0))
3014, 28, 29sylanbrc 697 . . 3 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐹𝑓𝐺):𝐼⟶ℕ0)
315simprd 479 . . . 4 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐹 “ ℕ) ∈ Fin)
3222nn0ge0d 11298 . . . . . . . 8 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → 0 ≤ (𝐺𝑥))
33 nn0re 11245 . . . . . . . . . 10 ((𝐹𝑥) ∈ ℕ0 → (𝐹𝑥) ∈ ℝ)
34 nn0re 11245 . . . . . . . . . 10 ((𝐺𝑥) ∈ ℕ0 → (𝐺𝑥) ∈ ℝ)
35 subge02 10488 . . . . . . . . . 10 (((𝐹𝑥) ∈ ℝ ∧ (𝐺𝑥) ∈ ℝ) → (0 ≤ (𝐺𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥)))
3633, 34, 35syl2an 494 . . . . . . . . 9 (((𝐹𝑥) ∈ ℕ0 ∧ (𝐺𝑥) ∈ ℕ0) → (0 ≤ (𝐺𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥)))
3723, 22, 36syl2anc 692 . . . . . . . 8 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → (0 ≤ (𝐺𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥)))
3832, 37mpbid 222 . . . . . . 7 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥))
3938ralrimiva 2960 . . . . . 6 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → ∀𝑥𝐼 ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥))
4014, 8, 12, 12, 13, 17, 15ofrfval 6858 . . . . . 6 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → ((𝐹𝑓𝐺) ∘𝑟𝐹 ↔ ∀𝑥𝐼 ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥)))
4139, 40mpbird 247 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐹𝑓𝐺) ∘𝑟𝐹)
422psrbaglesupp 19287 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝐷 ∧ (𝐹𝑓𝐺):𝐼⟶ℕ0 ∧ (𝐹𝑓𝐺) ∘𝑟𝐹)) → ((𝐹𝑓𝐺) “ ℕ) ⊆ (𝐹 “ ℕ))
4312, 1, 30, 41, 42syl13anc 1325 . . . 4 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → ((𝐹𝑓𝐺) “ ℕ) ⊆ (𝐹 “ ℕ))
44 ssfi 8124 . . . 4 (((𝐹 “ ℕ) ∈ Fin ∧ ((𝐹𝑓𝐺) “ ℕ) ⊆ (𝐹 “ ℕ)) → ((𝐹𝑓𝐺) “ ℕ) ∈ Fin)
4531, 43, 44syl2anc 692 . . 3 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → ((𝐹𝑓𝐺) “ ℕ) ∈ Fin)
462psrbag 19283 . . . 4 (𝐼𝑉 → ((𝐹𝑓𝐺) ∈ 𝐷 ↔ ((𝐹𝑓𝐺):𝐼⟶ℕ0 ∧ ((𝐹𝑓𝐺) “ ℕ) ∈ Fin)))
4746adantr 481 . . 3 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → ((𝐹𝑓𝐺) ∈ 𝐷 ↔ ((𝐹𝑓𝐺):𝐼⟶ℕ0 ∧ ((𝐹𝑓𝐺) “ ℕ) ∈ Fin)))
4830, 45, 47mpbir2and 956 . 2 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐹𝑓𝐺) ∈ 𝐷)
4948, 41jca 554 1 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → ((𝐹𝑓𝐺) ∈ 𝐷 ∧ (𝐹𝑓𝐺) ∘𝑟𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  {crab 2911  wss 3555   class class class wbr 4613  ccnv 5073  cima 5077   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604  𝑓 cof 6848  𝑟 cofr 6849  𝑚 cmap 7802  Fincfn 7899  cr 9879  0cc0 9880  cle 10019  cmin 10210  cn 10964  0cn0 11236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-ofr 6851  df-om 7013  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237
This theorem is referenced by:  psrbagconcl  19292  psrbagconf1o  19293  gsumbagdiaglem  19294  psrmulcllem  19306  psrlidm  19322  psrridm  19323  psrass1  19324  psrcom  19328
  Copyright terms: Public domain W3C validator