MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagconf1o Structured version   Visualization version   GIF version

Theorem psrbagconf1o 20082
Description: Bag complementation is a bijection on the set of bags dominated by a given bag 𝐹. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbagconf1o.1 𝑆 = {𝑦𝐷𝑦r𝐹}
Assertion
Ref Expression
psrbagconf1o ((𝐼𝑉𝐹𝐷) → (𝑥𝑆 ↦ (𝐹f𝑥)):𝑆1-1-onto𝑆)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐹   𝑥,𝑉,𝑦   𝑓,𝐼,𝑥,𝑦   𝑥,𝑆   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐷(𝑓)   𝑆(𝑦,𝑓)   𝑉(𝑓)

Proof of Theorem psrbagconf1o
Dummy variables 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2818 . 2 (𝑥𝑆 ↦ (𝐹f𝑥)) = (𝑥𝑆 ↦ (𝐹f𝑥))
2 simpll 763 . . . 4 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝑆) → 𝐼𝑉)
3 simplr 765 . . . 4 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝑆) → 𝐹𝐷)
4 simpr 485 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝑆) → 𝑥𝑆)
5 breq1 5060 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦r𝐹𝑥r𝐹))
6 psrbagconf1o.1 . . . . . . . 8 𝑆 = {𝑦𝐷𝑦r𝐹}
75, 6elrab2 3680 . . . . . . 7 (𝑥𝑆 ↔ (𝑥𝐷𝑥r𝐹))
84, 7sylib 219 . . . . . 6 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝑆) → (𝑥𝐷𝑥r𝐹))
98simpld 495 . . . . 5 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝑆) → 𝑥𝐷)
10 psrbag.d . . . . . 6 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
1110psrbagf 20073 . . . . 5 ((𝐼𝑉𝑥𝐷) → 𝑥:𝐼⟶ℕ0)
122, 9, 11syl2anc 584 . . . 4 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝑆) → 𝑥:𝐼⟶ℕ0)
138simprd 496 . . . 4 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝑆) → 𝑥r𝐹)
1410psrbagcon 20079 . . . 4 ((𝐼𝑉 ∧ (𝐹𝐷𝑥:𝐼⟶ℕ0𝑥r𝐹)) → ((𝐹f𝑥) ∈ 𝐷 ∧ (𝐹f𝑥) ∘r𝐹))
152, 3, 12, 13, 14syl13anc 1364 . . 3 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝑆) → ((𝐹f𝑥) ∈ 𝐷 ∧ (𝐹f𝑥) ∘r𝐹))
16 breq1 5060 . . . 4 (𝑦 = (𝐹f𝑥) → (𝑦r𝐹 ↔ (𝐹f𝑥) ∘r𝐹))
1716, 6elrab2 3680 . . 3 ((𝐹f𝑥) ∈ 𝑆 ↔ ((𝐹f𝑥) ∈ 𝐷 ∧ (𝐹f𝑥) ∘r𝐹))
1815, 17sylibr 235 . 2 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝑆) → (𝐹f𝑥) ∈ 𝑆)
1918ralrimiva 3179 . . 3 ((𝐼𝑉𝐹𝐷) → ∀𝑥𝑆 (𝐹f𝑥) ∈ 𝑆)
20 oveq2 7153 . . . . 5 (𝑥 = 𝑧 → (𝐹f𝑥) = (𝐹f𝑧))
2120eleq1d 2894 . . . 4 (𝑥 = 𝑧 → ((𝐹f𝑥) ∈ 𝑆 ↔ (𝐹f𝑧) ∈ 𝑆))
2221rspccva 3619 . . 3 ((∀𝑥𝑆 (𝐹f𝑥) ∈ 𝑆𝑧𝑆) → (𝐹f𝑧) ∈ 𝑆)
2319, 22sylan 580 . 2 (((𝐼𝑉𝐹𝐷) ∧ 𝑧𝑆) → (𝐹f𝑧) ∈ 𝑆)
2410psrbagf 20073 . . . . . . . . 9 ((𝐼𝑉𝐹𝐷) → 𝐹:𝐼⟶ℕ0)
2524adantr 481 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → 𝐹:𝐼⟶ℕ0)
2625ffvelrnda 6843 . . . . . . 7 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝐹𝑛) ∈ ℕ0)
27 simpll 763 . . . . . . . . 9 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → 𝐼𝑉)
286ssrab3 4054 . . . . . . . . . 10 𝑆𝐷
29 simprr 769 . . . . . . . . . 10 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → 𝑧𝑆)
3028, 29sseldi 3962 . . . . . . . . 9 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → 𝑧𝐷)
3110psrbagf 20073 . . . . . . . . 9 ((𝐼𝑉𝑧𝐷) → 𝑧:𝐼⟶ℕ0)
3227, 30, 31syl2anc 584 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → 𝑧:𝐼⟶ℕ0)
3332ffvelrnda 6843 . . . . . . 7 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝑧𝑛) ∈ ℕ0)
3412adantrr 713 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → 𝑥:𝐼⟶ℕ0)
3534ffvelrnda 6843 . . . . . . 7 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝑥𝑛) ∈ ℕ0)
36 nn0cn 11895 . . . . . . . 8 ((𝐹𝑛) ∈ ℕ0 → (𝐹𝑛) ∈ ℂ)
37 nn0cn 11895 . . . . . . . 8 ((𝑧𝑛) ∈ ℕ0 → (𝑧𝑛) ∈ ℂ)
38 nn0cn 11895 . . . . . . . 8 ((𝑥𝑛) ∈ ℕ0 → (𝑥𝑛) ∈ ℂ)
39 subsub23 10879 . . . . . . . 8 (((𝐹𝑛) ∈ ℂ ∧ (𝑧𝑛) ∈ ℂ ∧ (𝑥𝑛) ∈ ℂ) → (((𝐹𝑛) − (𝑧𝑛)) = (𝑥𝑛) ↔ ((𝐹𝑛) − (𝑥𝑛)) = (𝑧𝑛)))
4036, 37, 38, 39syl3an 1152 . . . . . . 7 (((𝐹𝑛) ∈ ℕ0 ∧ (𝑧𝑛) ∈ ℕ0 ∧ (𝑥𝑛) ∈ ℕ0) → (((𝐹𝑛) − (𝑧𝑛)) = (𝑥𝑛) ↔ ((𝐹𝑛) − (𝑥𝑛)) = (𝑧𝑛)))
4126, 33, 35, 40syl3anc 1363 . . . . . 6 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (((𝐹𝑛) − (𝑧𝑛)) = (𝑥𝑛) ↔ ((𝐹𝑛) − (𝑥𝑛)) = (𝑧𝑛)))
42 eqcom 2825 . . . . . 6 ((𝑥𝑛) = ((𝐹𝑛) − (𝑧𝑛)) ↔ ((𝐹𝑛) − (𝑧𝑛)) = (𝑥𝑛))
43 eqcom 2825 . . . . . 6 ((𝑧𝑛) = ((𝐹𝑛) − (𝑥𝑛)) ↔ ((𝐹𝑛) − (𝑥𝑛)) = (𝑧𝑛))
4441, 42, 433bitr4g 315 . . . . 5 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝑥𝑛) = ((𝐹𝑛) − (𝑧𝑛)) ↔ (𝑧𝑛) = ((𝐹𝑛) − (𝑥𝑛))))
4525ffnd 6508 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → 𝐹 Fn 𝐼)
4632ffnd 6508 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → 𝑧 Fn 𝐼)
47 inidm 4192 . . . . . . 7 (𝐼𝐼) = 𝐼
48 eqidd 2819 . . . . . . 7 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝐹𝑛) = (𝐹𝑛))
49 eqidd 2819 . . . . . . 7 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝑧𝑛) = (𝑧𝑛))
5045, 46, 27, 27, 47, 48, 49ofval 7407 . . . . . 6 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝐹f𝑧)‘𝑛) = ((𝐹𝑛) − (𝑧𝑛)))
5150eqeq2d 2829 . . . . 5 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝑥𝑛) = ((𝐹f𝑧)‘𝑛) ↔ (𝑥𝑛) = ((𝐹𝑛) − (𝑧𝑛))))
5234ffnd 6508 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → 𝑥 Fn 𝐼)
53 eqidd 2819 . . . . . . 7 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝑥𝑛) = (𝑥𝑛))
5445, 52, 27, 27, 47, 48, 53ofval 7407 . . . . . 6 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝐹f𝑥)‘𝑛) = ((𝐹𝑛) − (𝑥𝑛)))
5554eqeq2d 2829 . . . . 5 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝑧𝑛) = ((𝐹f𝑥)‘𝑛) ↔ (𝑧𝑛) = ((𝐹𝑛) − (𝑥𝑛))))
5644, 51, 553bitr4d 312 . . . 4 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝑥𝑛) = ((𝐹f𝑧)‘𝑛) ↔ (𝑧𝑛) = ((𝐹f𝑥)‘𝑛)))
5756ralbidva 3193 . . 3 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (∀𝑛𝐼 (𝑥𝑛) = ((𝐹f𝑧)‘𝑛) ↔ ∀𝑛𝐼 (𝑧𝑛) = ((𝐹f𝑥)‘𝑛)))
5823adantrl 712 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑧) ∈ 𝑆)
5928, 58sseldi 3962 . . . . . 6 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑧) ∈ 𝐷)
6010psrbagf 20073 . . . . . 6 ((𝐼𝑉 ∧ (𝐹f𝑧) ∈ 𝐷) → (𝐹f𝑧):𝐼⟶ℕ0)
6127, 59, 60syl2anc 584 . . . . 5 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑧):𝐼⟶ℕ0)
6261ffnd 6508 . . . 4 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑧) Fn 𝐼)
63 eqfnfv 6794 . . . 4 ((𝑥 Fn 𝐼 ∧ (𝐹f𝑧) Fn 𝐼) → (𝑥 = (𝐹f𝑧) ↔ ∀𝑛𝐼 (𝑥𝑛) = ((𝐹f𝑧)‘𝑛)))
6452, 62, 63syl2anc 584 . . 3 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝑥 = (𝐹f𝑧) ↔ ∀𝑛𝐼 (𝑥𝑛) = ((𝐹f𝑧)‘𝑛)))
6518adantrr 713 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑥) ∈ 𝑆)
6628, 65sseldi 3962 . . . . . 6 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑥) ∈ 𝐷)
6710psrbagf 20073 . . . . . 6 ((𝐼𝑉 ∧ (𝐹f𝑥) ∈ 𝐷) → (𝐹f𝑥):𝐼⟶ℕ0)
6827, 66, 67syl2anc 584 . . . . 5 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑥):𝐼⟶ℕ0)
6968ffnd 6508 . . . 4 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑥) Fn 𝐼)
70 eqfnfv 6794 . . . 4 ((𝑧 Fn 𝐼 ∧ (𝐹f𝑥) Fn 𝐼) → (𝑧 = (𝐹f𝑥) ↔ ∀𝑛𝐼 (𝑧𝑛) = ((𝐹f𝑥)‘𝑛)))
7146, 69, 70syl2anc 584 . . 3 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝑧 = (𝐹f𝑥) ↔ ∀𝑛𝐼 (𝑧𝑛) = ((𝐹f𝑥)‘𝑛)))
7257, 64, 713bitr4d 312 . 2 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝑥 = (𝐹f𝑧) ↔ 𝑧 = (𝐹f𝑥)))
731, 18, 23, 72f1o2d 7388 1 ((𝐼𝑉𝐹𝐷) → (𝑥𝑆 ↦ (𝐹f𝑥)):𝑆1-1-onto𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  {crab 3139   class class class wbr 5057  cmpt 5137  ccnv 5547  cima 5551   Fn wfn 6343  wf 6344  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7145  f cof 7396  r cofr 7397  m cmap 8395  Fincfn 8497  cc 10523  cle 10664  cmin 10858  cn 11626  0cn0 11885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-ofr 7399  df-om 7570  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886
This theorem is referenced by:  psrass1lem  20085  psrcom  20117  psropprmul  20334
  Copyright terms: Public domain W3C validator