MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagconf1o Structured version   Visualization version   GIF version

Theorem psrbagconf1o 19293
Description: Bag complementation is a bijection on the set of bags dominated by a given bag 𝐹. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbagconf1o.1 𝑆 = {𝑦𝐷𝑦𝑟𝐹}
Assertion
Ref Expression
psrbagconf1o ((𝐼𝑉𝐹𝐷) → (𝑥𝑆 ↦ (𝐹𝑓𝑥)):𝑆1-1-onto𝑆)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐹   𝑥,𝑉,𝑦   𝑓,𝐼,𝑥,𝑦   𝑥,𝑆   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐷(𝑓)   𝑆(𝑦,𝑓)   𝑉(𝑓)

Proof of Theorem psrbagconf1o
Dummy variables 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . 2 (𝑥𝑆 ↦ (𝐹𝑓𝑥)) = (𝑥𝑆 ↦ (𝐹𝑓𝑥))
2 simpll 789 . . . 4 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝑆) → 𝐼𝑉)
3 simplr 791 . . . 4 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝑆) → 𝐹𝐷)
4 simpr 477 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝑆) → 𝑥𝑆)
5 breq1 4616 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦𝑟𝐹𝑥𝑟𝐹))
6 psrbagconf1o.1 . . . . . . . 8 𝑆 = {𝑦𝐷𝑦𝑟𝐹}
75, 6elrab2 3348 . . . . . . 7 (𝑥𝑆 ↔ (𝑥𝐷𝑥𝑟𝐹))
84, 7sylib 208 . . . . . 6 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝑆) → (𝑥𝐷𝑥𝑟𝐹))
98simpld 475 . . . . 5 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝑆) → 𝑥𝐷)
10 psrbag.d . . . . . 6 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
1110psrbagf 19284 . . . . 5 ((𝐼𝑉𝑥𝐷) → 𝑥:𝐼⟶ℕ0)
122, 9, 11syl2anc 692 . . . 4 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝑆) → 𝑥:𝐼⟶ℕ0)
138simprd 479 . . . 4 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝑆) → 𝑥𝑟𝐹)
1410psrbagcon 19290 . . . 4 ((𝐼𝑉 ∧ (𝐹𝐷𝑥:𝐼⟶ℕ0𝑥𝑟𝐹)) → ((𝐹𝑓𝑥) ∈ 𝐷 ∧ (𝐹𝑓𝑥) ∘𝑟𝐹))
152, 3, 12, 13, 14syl13anc 1325 . . 3 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝑆) → ((𝐹𝑓𝑥) ∈ 𝐷 ∧ (𝐹𝑓𝑥) ∘𝑟𝐹))
16 breq1 4616 . . . 4 (𝑦 = (𝐹𝑓𝑥) → (𝑦𝑟𝐹 ↔ (𝐹𝑓𝑥) ∘𝑟𝐹))
1716, 6elrab2 3348 . . 3 ((𝐹𝑓𝑥) ∈ 𝑆 ↔ ((𝐹𝑓𝑥) ∈ 𝐷 ∧ (𝐹𝑓𝑥) ∘𝑟𝐹))
1815, 17sylibr 224 . 2 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝑆) → (𝐹𝑓𝑥) ∈ 𝑆)
1918ralrimiva 2960 . . 3 ((𝐼𝑉𝐹𝐷) → ∀𝑥𝑆 (𝐹𝑓𝑥) ∈ 𝑆)
20 oveq2 6612 . . . . 5 (𝑥 = 𝑧 → (𝐹𝑓𝑥) = (𝐹𝑓𝑧))
2120eleq1d 2683 . . . 4 (𝑥 = 𝑧 → ((𝐹𝑓𝑥) ∈ 𝑆 ↔ (𝐹𝑓𝑧) ∈ 𝑆))
2221rspccva 3294 . . 3 ((∀𝑥𝑆 (𝐹𝑓𝑥) ∈ 𝑆𝑧𝑆) → (𝐹𝑓𝑧) ∈ 𝑆)
2319, 22sylan 488 . 2 (((𝐼𝑉𝐹𝐷) ∧ 𝑧𝑆) → (𝐹𝑓𝑧) ∈ 𝑆)
2410psrbagf 19284 . . . . . . . . 9 ((𝐼𝑉𝐹𝐷) → 𝐹:𝐼⟶ℕ0)
2524adantr 481 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → 𝐹:𝐼⟶ℕ0)
2625ffvelrnda 6315 . . . . . . 7 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝐹𝑛) ∈ ℕ0)
27 simpll 789 . . . . . . . . 9 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → 𝐼𝑉)
28 ssrab2 3666 . . . . . . . . . . 11 {𝑦𝐷𝑦𝑟𝐹} ⊆ 𝐷
296, 28eqsstri 3614 . . . . . . . . . 10 𝑆𝐷
30 simprr 795 . . . . . . . . . 10 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → 𝑧𝑆)
3129, 30sseldi 3581 . . . . . . . . 9 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → 𝑧𝐷)
3210psrbagf 19284 . . . . . . . . 9 ((𝐼𝑉𝑧𝐷) → 𝑧:𝐼⟶ℕ0)
3327, 31, 32syl2anc 692 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → 𝑧:𝐼⟶ℕ0)
3433ffvelrnda 6315 . . . . . . 7 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝑧𝑛) ∈ ℕ0)
3512adantrr 752 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → 𝑥:𝐼⟶ℕ0)
3635ffvelrnda 6315 . . . . . . 7 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝑥𝑛) ∈ ℕ0)
37 nn0cn 11246 . . . . . . . 8 ((𝐹𝑛) ∈ ℕ0 → (𝐹𝑛) ∈ ℂ)
38 nn0cn 11246 . . . . . . . 8 ((𝑧𝑛) ∈ ℕ0 → (𝑧𝑛) ∈ ℂ)
39 nn0cn 11246 . . . . . . . 8 ((𝑥𝑛) ∈ ℕ0 → (𝑥𝑛) ∈ ℂ)
40 subsub23 10230 . . . . . . . 8 (((𝐹𝑛) ∈ ℂ ∧ (𝑧𝑛) ∈ ℂ ∧ (𝑥𝑛) ∈ ℂ) → (((𝐹𝑛) − (𝑧𝑛)) = (𝑥𝑛) ↔ ((𝐹𝑛) − (𝑥𝑛)) = (𝑧𝑛)))
4137, 38, 39, 40syl3an 1365 . . . . . . 7 (((𝐹𝑛) ∈ ℕ0 ∧ (𝑧𝑛) ∈ ℕ0 ∧ (𝑥𝑛) ∈ ℕ0) → (((𝐹𝑛) − (𝑧𝑛)) = (𝑥𝑛) ↔ ((𝐹𝑛) − (𝑥𝑛)) = (𝑧𝑛)))
4226, 34, 36, 41syl3anc 1323 . . . . . 6 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (((𝐹𝑛) − (𝑧𝑛)) = (𝑥𝑛) ↔ ((𝐹𝑛) − (𝑥𝑛)) = (𝑧𝑛)))
43 eqcom 2628 . . . . . 6 ((𝑥𝑛) = ((𝐹𝑛) − (𝑧𝑛)) ↔ ((𝐹𝑛) − (𝑧𝑛)) = (𝑥𝑛))
44 eqcom 2628 . . . . . 6 ((𝑧𝑛) = ((𝐹𝑛) − (𝑥𝑛)) ↔ ((𝐹𝑛) − (𝑥𝑛)) = (𝑧𝑛))
4542, 43, 443bitr4g 303 . . . . 5 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝑥𝑛) = ((𝐹𝑛) − (𝑧𝑛)) ↔ (𝑧𝑛) = ((𝐹𝑛) − (𝑥𝑛))))
46 ffn 6002 . . . . . . . 8 (𝐹:𝐼⟶ℕ0𝐹 Fn 𝐼)
4725, 46syl 17 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → 𝐹 Fn 𝐼)
48 ffn 6002 . . . . . . . 8 (𝑧:𝐼⟶ℕ0𝑧 Fn 𝐼)
4933, 48syl 17 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → 𝑧 Fn 𝐼)
50 inidm 3800 . . . . . . 7 (𝐼𝐼) = 𝐼
51 eqidd 2622 . . . . . . 7 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝐹𝑛) = (𝐹𝑛))
52 eqidd 2622 . . . . . . 7 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝑧𝑛) = (𝑧𝑛))
5347, 49, 27, 27, 50, 51, 52ofval 6859 . . . . . 6 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝐹𝑓𝑧)‘𝑛) = ((𝐹𝑛) − (𝑧𝑛)))
5453eqeq2d 2631 . . . . 5 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝑥𝑛) = ((𝐹𝑓𝑧)‘𝑛) ↔ (𝑥𝑛) = ((𝐹𝑛) − (𝑧𝑛))))
55 ffn 6002 . . . . . . . 8 (𝑥:𝐼⟶ℕ0𝑥 Fn 𝐼)
5635, 55syl 17 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → 𝑥 Fn 𝐼)
57 eqidd 2622 . . . . . . 7 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝑥𝑛) = (𝑥𝑛))
5847, 56, 27, 27, 50, 51, 57ofval 6859 . . . . . 6 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝐹𝑓𝑥)‘𝑛) = ((𝐹𝑛) − (𝑥𝑛)))
5958eqeq2d 2631 . . . . 5 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝑧𝑛) = ((𝐹𝑓𝑥)‘𝑛) ↔ (𝑧𝑛) = ((𝐹𝑛) − (𝑥𝑛))))
6045, 54, 593bitr4d 300 . . . 4 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝑥𝑛) = ((𝐹𝑓𝑧)‘𝑛) ↔ (𝑧𝑛) = ((𝐹𝑓𝑥)‘𝑛)))
6160ralbidva 2979 . . 3 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (∀𝑛𝐼 (𝑥𝑛) = ((𝐹𝑓𝑧)‘𝑛) ↔ ∀𝑛𝐼 (𝑧𝑛) = ((𝐹𝑓𝑥)‘𝑛)))
6223adantrl 751 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝐹𝑓𝑧) ∈ 𝑆)
6329, 62sseldi 3581 . . . . . 6 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝐹𝑓𝑧) ∈ 𝐷)
6410psrbagf 19284 . . . . . 6 ((𝐼𝑉 ∧ (𝐹𝑓𝑧) ∈ 𝐷) → (𝐹𝑓𝑧):𝐼⟶ℕ0)
6527, 63, 64syl2anc 692 . . . . 5 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝐹𝑓𝑧):𝐼⟶ℕ0)
66 ffn 6002 . . . . 5 ((𝐹𝑓𝑧):𝐼⟶ℕ0 → (𝐹𝑓𝑧) Fn 𝐼)
6765, 66syl 17 . . . 4 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝐹𝑓𝑧) Fn 𝐼)
68 eqfnfv 6267 . . . 4 ((𝑥 Fn 𝐼 ∧ (𝐹𝑓𝑧) Fn 𝐼) → (𝑥 = (𝐹𝑓𝑧) ↔ ∀𝑛𝐼 (𝑥𝑛) = ((𝐹𝑓𝑧)‘𝑛)))
6956, 67, 68syl2anc 692 . . 3 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝑥 = (𝐹𝑓𝑧) ↔ ∀𝑛𝐼 (𝑥𝑛) = ((𝐹𝑓𝑧)‘𝑛)))
7018adantrr 752 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝐹𝑓𝑥) ∈ 𝑆)
7129, 70sseldi 3581 . . . . . 6 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝐹𝑓𝑥) ∈ 𝐷)
7210psrbagf 19284 . . . . . 6 ((𝐼𝑉 ∧ (𝐹𝑓𝑥) ∈ 𝐷) → (𝐹𝑓𝑥):𝐼⟶ℕ0)
7327, 71, 72syl2anc 692 . . . . 5 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝐹𝑓𝑥):𝐼⟶ℕ0)
74 ffn 6002 . . . . 5 ((𝐹𝑓𝑥):𝐼⟶ℕ0 → (𝐹𝑓𝑥) Fn 𝐼)
7573, 74syl 17 . . . 4 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝐹𝑓𝑥) Fn 𝐼)
76 eqfnfv 6267 . . . 4 ((𝑧 Fn 𝐼 ∧ (𝐹𝑓𝑥) Fn 𝐼) → (𝑧 = (𝐹𝑓𝑥) ↔ ∀𝑛𝐼 (𝑧𝑛) = ((𝐹𝑓𝑥)‘𝑛)))
7749, 75, 76syl2anc 692 . . 3 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝑧 = (𝐹𝑓𝑥) ↔ ∀𝑛𝐼 (𝑧𝑛) = ((𝐹𝑓𝑥)‘𝑛)))
7861, 69, 773bitr4d 300 . 2 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝑥 = (𝐹𝑓𝑧) ↔ 𝑧 = (𝐹𝑓𝑥)))
791, 18, 23, 78f1o2d 6840 1 ((𝐼𝑉𝐹𝐷) → (𝑥𝑆 ↦ (𝐹𝑓𝑥)):𝑆1-1-onto𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  {crab 2911   class class class wbr 4613  cmpt 4673  ccnv 5073  cima 5077   Fn wfn 5842  wf 5843  1-1-ontowf1o 5846  cfv 5847  (class class class)co 6604  𝑓 cof 6848  𝑟 cofr 6849  𝑚 cmap 7802  Fincfn 7899  cc 9878  cle 10019  cmin 10210  cn 10964  0cn0 11236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-ofr 6851  df-om 7013  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237
This theorem is referenced by:  psrass1lem  19296  psrcom  19328  psropprmul  19527
  Copyright terms: Public domain W3C validator